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Recovering Trees with Convex Clustering\ast 

Eric C. Chi\dagger and Stefan Steinerberger\ddagger 

Abstract. Hierarchical clustering is a fundamental unsupervised learning task, whose aim is to organize a
collection of points into a tree of nested clusters. Convex clustering has been proposed recently
as a new way to construct tree organizations of data that are more robust to perturbations in the
input data than standard hierarchical clustering algorithms. In this paper, we present conditions
that guarantee when the convex clustering solution path recovers a tree and also make explicit how
affinity parameters in the convex clustering formulation modulate the structure of the recovered tree.
The proof of our main result relies on establishing a novel property of point clouds in a Hilbert space,
which is potentially of independent interest.
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1. Introduction. Hierarchical clustering is a fundamental unsupervised learning task,
whose aim is to organize a collection of points into a tree of nested clusters. To reinforce
the idea that we seek a collection of nested clusters, we will often also refer to clusters as
folders in this paper.

As an illustration, Figure 1 shows a collection of points in \BbbR 2, labeled 1 to 18, that we seek
to organize. Based on the Euclidean distances between the points, an intuitive organization
is the following hierarchy of nested clusters. At the first, and finest, level of clustering, we
partition the set \{ 1, . . . , 18\} into five subsets or folders:

F1,1 = \{ 1, 2, 3, 4, 5\} , F1,2 = \{ 6, 7, 8\} , F1,3 = \{ 9, 10, 11, 12, 13\} ,
F1,4 = \{ 14, 15, 16\} , and F1,5 = \{ 17, 18\} .

At the second level of clustering, we merge the folders from the first level into a partition of
two folders: F2,1 = F1,1 \cup F1,2 and F2,2 = F1,3 \cup F1,4 \cup F1,5.

Finally, at the third level of clustering, we merge the folders from the second level into
a single folder: F3,1 = F2,1 \cup F2,2. Figure 2 illustrates the described tree organization. Since
each level of the tree consists of a partition of the data points, we refer to such hierarchical
organizations as ``partition trees.""
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Figure 1. Eighteen points in \BbbR 2 to organize.

Figure 2. Partition tree.

There are many existing algorithms for automatically constructing partition trees, but
perhaps the most often used algorithms in practice are collectively known as agglomerative
hierarchical clustering methods [18, 21, 23, 30, 47]. Given a collection of points in \BbbR p, agglom-
erative hierarchical clustering methods recursively merge the points which are closest together
until all points are joined. Different choices in the definition of closeness lead to the different
variants. Figure 3 shows two trees computed by two variants of the agglomerative hierarchical
clustering. For each tree, the eighteen points reside in the ``leaves"" which are organized into
a hierarchy of nested clusters that captures an increasingly coarser grouping structure as oneD
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(a) Single-linkage tree.
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(b) Average-linkage tree.

Figure 3. Hierarchical clustering of data in Figure 1 under two different agglomeration methods.

progresses from the leaves to the root of the tree. The branch lengths in the tree quantify the
similarity between pairs of points, or clusters at higher levels. We see that both trees recover
binary partition trees that are similar to the ideal partition tree shown in Figure 2.

1.1. Convex hierarchical clustering? Although agglomerative hierarchical methods are
widely used in practice, the greedy manner in which trees are constructed often results in an
unstable mapping between input data and output tree. Indeed, agglomerative hierarchical
clustering methods have been shown to be highly sensitive to perturbations in the input data;
namely, the resulting output trees can vary drastically with the addition of a little Gaussian
noise to the data [10].

One promising alternative strategy for constructing trees stably relies on formulating the
clustering problem as a continuous optimization problem. Following up on the initial proposal
by [33], several recent works have shown that solving a sequence of convex optimization
problems can recover tree organizations [9, 12, 19, 25, 32, 41]. Given n points x1, . . . , xn in
\BbbR p, we seek cluster centers (centroids) ui in \BbbR p attached to point xi that minimize the convex
criterion

E\gamma (u) =
1

2

n\sum 
i=1

\| xi  - ui\| 2 + \gamma 
\sum 
i<j

wij\| ui  - uj\| ,(1.1)

where \gamma is a nonnegative tuning parameter, wij is a nonnegative affinity that quantifies the
similarity between xi and xj , and u is the vector in \BbbR np obtained by stacking the vectors
u1, . . . , un on top of each other. For now, we assume all norms are Euclidean norms; we will
later consider arbitrary norms. The sum-of-squares data-fidelity term in (1.1) quantifies how
well the centroids ui approximate the data xi, while the sum-of-norms regularization term
penalizes the differences between pairs of centroids ui and uj . To expand on the latter, theD
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(a) Gaussian kernel affinities.
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(b) Unit affinities.

Figure 4. Solution paths of convex clustering using different affinities wij.

regularization term is a composition of the group lasso [51] and the fused lasso [44] and incen-
tivizes sparsity in the pairwise differences of centroid pairs. Overall, E\gamma (u) can be interpreted
as the energy of a configuration of centroids u for a given relative weighting \gamma between data-
fidelity and model complexity as quantified by the regularization term. We next elaborate
upon how u(\gamma ) varies as the tuning parameter \gamma varies.

Because the objective function E\gamma (u) in (1.1) is strongly convex, for each value of \gamma it
possesses a unique minimizer u(\gamma ), whose n subvectors in \BbbR p we denote by ui(\gamma ). The tuning
parameter \gamma trades off the relative emphasis between data fit and differences between pairs
of centroids. When \gamma = 0, the minimum is attained when ui = xi, namely, when each point
occupies a unique cluster. As \gamma increases, the regularization term encourages cluster centroids
to fuse together. Two points xi and xj with ui = uj are said to belong to the same cluster.
For sufficiently large \gamma , the ui fuse into a single cluster, namely, ui = x, where x is the average
of the data xi [12, 42]. Moreover, the unique global minimizer u(\gamma ) is a continuous function
of the tuning parameter \gamma [10]; we refer to the continuous paths ui(\gamma ), traced out from each
xi to x as \gamma varies, collectively as the solution path. Thus, by computing ui(\gamma ) for a sequence
of \gamma over an appropriately sampled range of values, we hope to recover a partition tree.

Figure 4 plots the ui as a function of \gamma for two different sets of affinities wij . We will discuss
the differences in the recovered trees shortly, but for now we point out that computing u(\gamma ) for
a range of \gamma indeed appears to recover trees that bear a similarity to the desired partition tree
in Figure 2. Moreover, the ui(\gamma ) are 1-Lipschitz functions of the data xi [11]. Consequently,
small perturbations to the input data xi are guaranteed to not result in disproportionately
large variations in the output ui(\gamma ).

At this point, the solution path of convex clustering appears to stably recover partition
trees as desired. Nonetheless, questions remain as to whether convex clustering is a form
of convex hierarchical clustering. Specifically, (i) when is the solution path guaranteed toD
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produce a tree, and (ii) how do the affinities modulate the branch formation in the recovered
tree?

Hocking et al. provide a partial answer to the first question [19]. They prove that if unit
affinities are used, namely, wij = 1 for all i and j, and if 1-norms are used in the regularization
term in (1.1), then the solution path must be a tree. On the other hand, in the same paper,
they also provide an example, using the Euclidean norm in the regularization term, where
the solution path can fail to be a tree. Specifically, as the tuning parameter \gamma increases, it is
possible for centroids to initially fuse and then ``unfuse"" before eventually fusing again. We
provide an example of this phenomenon in Appendix A.

The differences in the two recovered trees shown in Figure 4 motivate the second question.
Figure 4(a) shows the solution path when using Gaussian kernel affinities, namely, for all i
and j

wij = exp

\biggl( 
 - \| xi  - xj\| 22

\sigma 

\biggr) 
,

where \sigma is a positive scale parameter. Gaussian kernel affinities have been empirically shown
to provide more aggressive fusion of folders closer to the leaves, and consequently more infor-
mative, hierarchical clustering results [10, 12, 19]. Figure 4(b) shows the solution path when
using unit affinities. We see that Gaussian kernel affinities can generate a solution path that
recovers the partition tree in Figure 2, while unit affinities can generate a solution path that
recovers a less ``nested"" approximation to the partition tree in Figure 2. The same sets of
points and folders are getting shrunk together in Figures 4(a) and 4(b), but less aggressively
in the latter as \gamma increases. In Appendix B, we provide an additional real data example
highlighting how different the recovered trees can be under the two sets of affinities. Our
main result will complement these empirical observations with a theoretical argument for why
certain data-driven affinities, including but not limited to Gaussian kernel affinities, should
be preferred over others.

1.2. Contributions. In this paper, we answer the open questions of (i) why the solution
path of convex clustering can recover a tree and (ii) how affinities can be chosen to guarantee
recovery of a given partition tree on the data. We first answer these questions in the case
when Euclidean norms are employed in (1.1) and then later describe how our results can be
extended to more general data-fidelity terms and arbitrary norms in the regularization term.

We clarify how the theoretical contributions in this paper differ from existing theoretical
results in the convex clustering literature. Radchenko and Mukherjee in [34] present a pop-
ulation model for the convex clustering procedure and provide an analysis of the asymptotic
properties of the sample convex clustering procedure. We note that their analysis is specific
to using 1-norms in the regularization term, while we consider first the Euclidean norm before
generalizing to arbitrary ones. Zhu et al. in [54] provide conditions under which two true un-
derlying clusters can be identified by solving the convex clustering problem with appropriately
chosen affinities. Similarly, She [39] and Sharpnack, Singh, and Rinaldo [38] present results
when the convex clustering solution can consistently recover groupings. Others present finite
sample prediction error bounds for recovery of a latent set of clusters [42, 46].

Our contributions differ from these prior works in two ways. First, we provide conditions
on the affinities that ensure that the solution path reconstructs an entire hierarchical partitionD
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tree and clarify how these affinities can be explicitly tuned to recover a specific target tree.
With the exception of the work by Radchenko and Mukherjee in [34], all of the other works
present theoretical guarantees for recovering a single partition level rather than a nested
hierarchy of partitions. Second, in contrast to all of the previous work, we do not make any
distributional assumptions on the data. Instead, we focus in this paper on understanding the
behavior of the solution path as a function of the affinities used in the regularization term.
By understanding this dependency, we gain insight into why a commonly used data-driven
affinities choice, namely, the Gaussian kernel, works so well in practice.

1.3. Outline. The rest of this paper proceeds as follows. In section 2, we define structures
needed to construct affinities that will enable us to recover a desired partition tree and, once
equipped with the necessary building blocks, give an overview of our main result. In section 3,
we introduce a geometric lemma that is key to proving our main result. In section 4, we
give proofs of the geometric lemma and our main theorem. In section 5, we show how our
main result can be generalized to other data-fidelity terms and regularization term norms. In
section 7, we conclude with a discussion on our results within the broader context of penalized
regression methods for clustering.

2. Setup and overview of main result. Our main result shows that if the affinities wij

arise from an underlying partition tree, then that tree can be reconstructed from the solution
path of the convex clustering problem. To proceed, we will need a formal definition of a
partition tree and then a judicious assignment of weights to the edges in the tree graph
corresponding to the partition tree.

2.1. Partition tree. Let \Omega = \{ x1, . . . , xn\} \subset \BbbR p be an arbitrary collection of points, and
let [n] denote the set of indices \{ 1, . . . , n\} . Following the notation and language employed in
[2] and [29, 28], we say that \scrT is a partition tree on the collection of points \Omega consisting of
\scrP 0, . . . ,\scrP L partitions of \Omega if it has the following properties:

1. The partition \scrP l = \{ Fl,1, . . . , Fl,nl
\} at level l consists of nl disjoint nonempty subsets

of indices in \{ 1, . . . , n\} , termed folders and denoted by Fl,i, i \in [nl].
2. The finest partition \scrP 0 contains n0 = n singleton ``leaf"" folders, namely, F0,i = \{ i\} .
3. The coarsest partition \scrP L contains a single ``root"" folder, namely, FL,1 = [n].
4. Partitions are nested; if F \in \scrP l, then F \subseteq F \prime for some F \prime \in \scrP l+1, namely, each folder

at level l  - 1 is a subset of a folder from level l. Note that we allow for F = F \prime .
A partition tree \scrT on \Omega can be seen as the collection of all folders at all levels, namely,
\scrT = \{ Fl,i : 0 \leq l \leq L, i \in [nl]\} .

2.2. Weighted tree graph. We next assign every folder Fl,i \in \scrT to a node and draw an
edge between nested folders in adjacent levels. Thus, if F \in \scrP l, F

\prime \in \scrP l+1, and F \subset F \prime , then
we draw an edge (F, F \prime ) between F and F \prime . If we let \scrE denote the set of all edges between
nested folders in adjacent levels, then the resulting graph \scrG = (\scrE , \scrT ) is a tree.

We next assign weights on the edges in \scrE as follows. Let \varepsilon > 0 be a fixed parameter,
whose value we will elaborate upon shortly. Edges between level 0 folders and level 1 folders
receive a weight of 1. Edges between level 1 folders and level 2 folders receive a weight of
\varepsilon . Edges between level 2 folders and level 3 folders receive a weight of \varepsilon 2, and so on. Thus,
edges between level l folders and level l + 1 folders receive a weight of \varepsilon l. Figure 5(a) showsD
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RECOVERING TREES WITH CONVEX CLUSTERING 389

(a) Weighted tree graph. (b) The path p15 from 1 to 5 produces w15 = 1.

(c) The path p17 from 1 to 7 produces w17 = \varepsilon . (d) The path p19 from 1 to 9 produces w19 = \varepsilon 2.

Figure 5. Weighted tree: Edges that are solid lines have weight 1. Edges that are dashed lines have weight
\varepsilon . Edges that are dotted lines have weight \varepsilon 2.

the weighted tree graph \scrG derived from the partition tree given in Figure 2.
We are finally ready to construct wij from the weighted tree graph. Let F0,i and F0,j

be leaf nodes in the graph \scrG , and let pij be the sequence of edges in \scrE that form the path
between F0,i and F0,j . Then we set wij to be the smallest weight of edges contained in pij .
In other words, wij is the smallest edge weight one sees in traveling from i to j. Figure 5(b)
shows that the path p15 from 1 to 5 in the weighted graph \scrG leads to the affinity assignment
w15 = 1. Figures 5(c) and 5(d) show additional examples of how affinities are derived from
the edge weights in \scrG .

2.3. Main result. We now state our main result.

Theorem 2.1. There exists \varepsilon 0 > 0, depending on the data and the tree structure (which we
assume defines the wij as outlined above in section 2.2), so that for all \varepsilon \in (0, \varepsilon 0) the solutionD
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path

u(\gamma ) = argmin
u1,...,un

n\sum 
i=1

\| xi  - ui\| 2 + \gamma 
n\sum 

i,j=1

wij\| ui  - uj\| ,

as parametrized by \gamma \in (0, \gamma 0), traces out exactly the partition tree structure underlying the
affinities wij before collapsing into a point for some large, but finite, \gamma 0.

Informally speaking, this means that as \gamma increases, elements from the same folder collapse
into a single point; these folders (now single points) move themselves (or, rather, the fused
points move in a coordinated manner) and then collapse again in a way predicted by the tree
(i.e., folders sharing a parent folder collapse). This evolution continues until all points have
collapsed into a single point (which happens for a finite value \gamma 0). We have no precise bound
on the times \gamma at which these collapses happen, but by making \varepsilon 0 sufficiently small, there is
an arbitrary long time between stages of collapsing. The proof of Theorem 2.1 also gives a
bound on \gamma 0 as a by-product.

Remarks. Several additional remarks are in order.
1. At first blush, it appears that the data xi plays no role in the recovered partition tree as

the affinities wij dictate the trajectory of the solution path. In practice, however, one
would never use wij that did not depend on the data. We study the convex clustering
solution path separate from any particular data-driven choice of the affinities, but
intuitively the affinity wij should be inversely proportional to the distance between
xi and xj . Theorem 2.1 further clarifies a sufficient condition on how rapidly (i.e.,
geometrically fast) the affinity wij should decrease as the distance between xi and
xj increases for all pairs of data points, to ensure the solution path is a tree. To
further clarify the importance of using wij that respect the geometry of the data, in
Appendix A we give an example of a solution path that is not a tree as a consequence
of using wij that do not respect the geometry of the data.

2. The affinities do not need to have exactly the structure described in section 2.2. A more
precise statement would be that there exists an \varepsilon 0 such that whenever we associate
weight \varepsilon 1 \in (0, \varepsilon 0) to the first level, then there exists an \varepsilon (depending on everything
and \varepsilon 0, \varepsilon 1) such that if we associate weight \varepsilon 2 \in (0, \varepsilon ) to the second level, there exists
an \varepsilon 3 (depending on everything and \varepsilon 0, \varepsilon 1, \varepsilon 2, etc.). Simply put, it suffices to have a
sufficiently clear separation of scales encoded in the affinities.
Indeed, Figure 6 shows the Gaussian kernel affinities w1j between x1 and the remain-
ing xj for j = 2, . . . , 18 from the example in Figure 1. We observe clear separation of
scales encoded in the Gaussian kernel affinities that align with the partition tree and
corresponding weighted graph \scrG in Figure 5(a). Similar plots of the set of affinities
associated with each data point reveal alignment with the partition tree and corre-
sponding weighted graph \scrG . The key quality of the Gaussian kernel should be readily
apparent; namely, the Gaussian kernel naturally encodes, in a data-driven way, a geo-
metric decay in weights that is sufficient to reconstruct a partition tree embedded
in Euclidean space. We emphasize, however, that there is nothing special about the
Gaussian kernel, and its rapid decay in weights is not even necessary. Any data-driven
affinities possessing a sufficient separation of scales will produce similar trees.D
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Figure 6. Gaussian kernel affinities w1j between x1 and the other xj from the example in Figure 1.

3. The result is completely independent of where the \{ x1, . . . , xn\} \in \BbbR p are located in
space. Their location, however, affects the critical scale \varepsilon 0.

4. The statement guarantees that points ui fuse together with respect to the folder struc-
ture before moving to fuse with other points and their respective folder structure;
however, we do not have clear control over whether they intersect (in the sense of two
ui, uj belonging to different folders occupying the same point in space for some value
of \gamma ) in between or not. Generically, this will not happen but, for a nongeneric set of
xi, it is possible to arrange for the ui to indeed intersect, then move apart again before
finally fusing for a larger value of \gamma . This is a consequence of our lack of conditions
on the position of the points xi. If the xi are located in space in a way that actually
reflects the tree structure, then they will fuse upon intersecting for the first time.

3. A geometric lemma. We establish a geometric lemma that is of intrinsic interest; it
states that for any set of distinct points \{ u1, . . . , un\} \in \BbbR p, one of these points u (indeed,
one on the boundary of the convex hull of all the points) has the property that for a suitable
``viewing direction"" v \in \BbbR p most points are clearly visible when standing in the point u and
looking towards the viewing direction (in the sense of having a large inner product). We now
phrase this more precisely below. Recall that the convex hull of a set S, denoted by convS,
is the smallest convex set containing the set S.

Lemma 3.1. For every set S = \{ u1, . . . , un\} \subset \BbbR p of n \geq 3 distinct points, there exist

u \in S \cap \partial convS and v \in \BbbR p satisfying \| v\| = 1

such that

1

n

n\sum 
i=1
ui \not =u

\biggl\langle 
ui  - u

\| ui  - u\| 
, v

\biggr\rangle 
\geq 1

2
.(3.1)

The statement can be summarized as follows: for a suitable point u \in S \cap \partial convS, if we
map the direction to all other points onto the unit sphere \BbbS p, then convexity implies that thereD
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u

v

Figure 7. A set of points in \BbbR 2: there exists a point u on the boundary of the convex hull and a direction v
such that the average inner product of (ui  - u)/\| ui  - u\| and v is bounded away from 0 by a universal constant.

is a great circle on \BbbS p such that all these directions are on one side of the great circle or on it.
This can be interpreted as the dualization of the fact that there is a supporting hyperplane
touching the boundary of the convex hull in such a way that all of convS is on one side. The
statement claims the existence of a boundary point u such that the average projection point
is bounded away from that great circle by a universal constant. Figure 7 gives a concrete
illustration of Lemma 3.1.

We will use Lemma 3.1 to study the regularization term in (1.1), namely, the functional

J(u) =

m\sum 
i,j=1

\| ui  - uj\| for a given set of distinct points \{ u1, u2, . . . , um\} \subset \BbbR p.

The functional J is clearly minimized for any collection of ui that are all identical. Con-
sequently, any collection of distinct ui represents a suboptimal configuration of centroids
and therefore admits a descent direction that leads to a decrease in energy. The power of
Lemma 3.1 is that it identifies a direction that guarantees a large amount of decrease in J .
To see this, we write down the directional derivative of J explicitly.

The directional derivative of moving uj in direction v \in \BbbR p, normalized to \| v\| = 1, is
computed as\biggl\langle 

\partial J

\partial uj
, v

\biggr\rangle 
= lim

t\rightarrow 0

1

t

\sum 
i \not =j

\| ui  - (uj + tv)\|  - \| ui  - uj\| 

= lim
t\rightarrow 0

1

t

\sum 
i \not =j

\sqrt{} \bigl\langle 
ui  - (uj + tv), ui  - (uj + tv)

\bigr\rangle 
 - \| ui  - uj\| 

=
\sum 
i \not =j

lim
t\rightarrow 0

1

t

\biggl( \sqrt{} 
\| ui  - uj\| 2  - 2t \langle ui  - uj , v\rangle + t2  - \| uj  - ui\| 

\biggr) 

=  - 
\sum 
i \not =j

\biggl\langle 
ui  - uj

\| ui  - uj\| 
, v

\biggr\rangle 
.

(3.2)

The expression for the directional derivative given in (3.2), in conjunction with Lemma 3.1,
shows that it is always possible to find one point such that moving it \delta in a certain directionD
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RECOVERING TREES WITH CONVEX CLUSTERING 393

decreases the entire functional by at least (n/2)\delta . The existence of a direction of guaranteed
minimum decrease in J will be essential in proving Theorem 2.1.

The following variant of Lemma 3.1 will also be useful in applications.

Lemma 3.2. For every set S = \{ u1, . . . , un\} \subset \BbbR p of n \geq 3 points such that not all of them
are in the same place, there exist

u \in S \cap \partial convS and v \in \BbbR p satisfying \| v\| = 1

such that

1

n

n\sum 
i=1
ui \not =u

\biggl\langle 
ui  - u

\| ui  - u\| 
, v

\biggr\rangle 
\geq 1

4
.(3.3)

Before proceeding to proofs of the geometric lemmata and main result, we also note the
following consequence because of its intrinsic interest. We give a proof of Corollary 3.3 in
Appendix C.

Corollary 3.3. Let S = \{ u1, . . . , un\} \subset \BbbR p be a set of distinct points. Then there exist at
least n/6 points u \in S having the property that for some \| v\| = 1

1

n

n\sum 
i=1
ui \not =u

\biggl\langle 
ui  - u

\| ui  - u\| 
, v

\biggr\rangle 
\geq 1

4
.

This simple statement has nontrivial implications: Lemma 3.1 may make it seem like
these vantage points from which to observe the entirety of the set without having too many
small inner products are rare. To the contrary, Corollary 3.3 declares that the property is
surprisingly common and enjoyed by a universal fraction of all points. While we do not
use Corollary 3.3 in the proof of our main result, we believe this result to be of substantial
independent interest since it can be interpreted as a basic statement (with universal constants)
in a general Hilbert space. It could be of interest to further pursue this line of investigation.

4. Proofs. We now prove Lemmata 3.1 and 3.2 and Theorem 2.1.

4.1. Geometric lemmata.

Proof of Lemma 3.1. Let S = \{ u1, u2, . . . , un\} . Select an arbitrary u \in \partial S \cap convS, and
let y \in S be a point in the set furthest from u (there may be more than one such point),
formally

\| u - y\| = max
1\leq i\leq n

\| u - ui\| .(4.1)

It is easy to see that y resides on the boundary of the convex hull; y is in fact an extreme
point. We now show that u, equipped with the viewing direction vector v1 = (y - u)/\| y - u\| ,
or y, equipped with the viewing direction vector v2 =  - v1, has the desired property. We first
show that for every ui /\in \{ u, y\} \biggl\langle 

ui  - u

\| ui  - u\| 
, v1

\biggr\rangle 
+

\biggl\langle 
ui  - y

\| ui  - y\| 
, v2

\biggr\rangle 
\geq 1.(4.2)
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Since we are only dealing with the three points u, y, and ui, all angles are determined by
the corresponding triangle, which we can assume without loss of generality to reside in \BbbR 2.
Moreover, the invariance under dilation, translation, and rotation enables us to assume that
u = (0, 0) and y = (1, 0). If we write ui = (a, b), then the expression on the left-hand side of
(4.2) simplifies to\biggl\langle 

ui  - u

\| ui  - u\| 
, v1

\biggr\rangle 
+

\biggl\langle 
ui  - y

\| ui  - y\| 
, v2

\biggr\rangle 
=

a\surd 
a2 + b2

+
1 - a\sqrt{} 

(1 - a)2 + b2
,(4.3)

and the condition on the distances \| u - ui\| and \| y  - ui\| required by (4.1) implies that

max
\bigl\{ 
a2 + b2, (1 - a)2 + b2

\bigr\} 
\leq 1.(4.4)

Minimizing the expression in (4.3) subject to the constraint in (4.4) gives us the desired
inequality in (4.2); equality is almost attained for ui very close to either u or y, and equality
is attained for (a, b) = (1/2,

\surd 
3/2). We then sum the left- and right-hand sides of (4.2) over

i = 1, . . . , n to arrive at the inequality

n\sum 
i=1
ui \not =u

\biggl\langle 
ui  - u

\| ui  - u\| 
, v1

\biggr\rangle 
+

n\sum 
i=1
ui \not =y

\biggl\langle 
ui  - y

\| ui  - y\| 
, v2

\biggr\rangle 
\geq n,(4.5)

which follows from realizing that each of the sums contains one term that is equal to 1 and
that the remaining sum runs over all ui /\in \{ u, y\} , yielding at least a total of n  - 2. Thus at
least one of the two terms is size n/2 and we obtain the desired result.

Proof of Lemma 3.2. Let S = \{ u1, u2, . . . , un\} be a set of points not all of which are in
the same place. Then the diameter of the set is not 0 and there exist two points, that we
call without loss of generality u1 and u2, such that \| u1  - u2\| = diam(S). Let us suppose the
number of points that are collocated with u1 is n1, the number of points that are collocated
with u2 is n2, and the number of points everywhere else is n3. Clearly,

n1 + n2 + n3 = n.

The main idea is now to derive two independent lower bounds. One of them will be tighter
when n1+n2 is large (compared to n) and one will be tighter when n1+n2 is small (compared
to n). We can then always apply the stronger of the two bounds, and that will end up in a
lower bound of n/4 regardless of what the values of n1 and n2 are.

Bound 1. We could pick u to be u1 and its viewing direction vector v1 = (u2 - u1)/\| u2 - u1\| 
or, conversely, the point u2 and the vector v2 = (u2 - u1)/\| u2 - u1\| to be u and v, respectively.
We note that, since we chose the points to be of maximal distance, all arising inner products
are nonnegative. Therefore

n\sum 
i=1

ui \not =u1

\biggl\langle 
ui  - u1
\| ui  - u1\| 

, v1

\biggr\rangle 
\geq n2
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and
n\sum 

i=1
ui \not =u2

\biggl\langle 
ui  - u2
\| ui  - u2\| 

, v2

\biggr\rangle 
\geq n1.

Altogether, there is a pair of vectors u and v that achieves a sum of inner products of at least
max \{ n1, n2\} , which is a good bound when either of those two numbers is large (but true in
all cases). On the other hand, since we are only considering that small subset of points, the
bounds naturally become quite loose when n1 + n2 is small.

Bound 2. On the other hand, we can remove all the points collocated with either u1 or
u2 except for one in each set, leaving us with n - n1  - n2 + 2 points. We can now apply the
previous argument, which guarantees the existence of a vector u and a vector v with

n\sum 
i=1
ui \not =u

\biggl\langle 
ui  - u

\| ui  - u\| 
, v

\biggr\rangle 
\geq n - n1  - n2 + 2

2
.

We see that this bound is quite good when n1 and n2 are small; in particular we recover the
original bound for distinct points whenever n1 = n2 = 1.

Conclusion. Having both bounds at our disposal, we can always guarantee the existence
of a pair u and v such that the lower bound is at least

max

\biggl\{ 
n - n1  - n2 + 2

2
, n1, n2

\biggr\} 
\geq 1

2

\biggl( 
n - n1  - n2 + 2

2
+

n1 + n2

2

\biggr) 
\geq n

4
,

where the last line makes use of the inequality

max \{ x, y, z\} \geq x

2
+

y

4
+

z

4
for all x, y, z \geq 0

since the maximum has to exceed every weighted average.

4.2. Main theorem.

Outline. The proof is based on the self-similarity of the statement. We essentially show
that points at the lowest level fuse in the right way with points in the same leaves (those who
have mutual affinity 1). Once they are fused, we show that they stay fused for all subsequent
values of \gamma . The newly emerging problem turns out to be exactly of the same type as the
original one: we reinterpret fused points as single points with a mutual interaction now at
scale \sim \varepsilon (which becomes the dominant scale since points with wij = 1 are already fused).
This makes crucial use of the geometry of the 1-norm. At every step, the arguments will go
through, provided \varepsilon is sufficiently small (but positive), and since the tree is of finite height,
the result follows. To be more precise, the argument will proceed as follows:

1. We assume that the xi are fixed and that the ui are solutions of the minimization
problem

inf
u1,...,un

\left[  n\sum 
i=1

\| xi  - ui\| 2 + \gamma 
n\sum 

i,j=1

wij\| ui  - uj\| 

\right]  .
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396 ERIC C. CHI AND STEFAN STEINERBERGER

Plugging in an example shows that the minimal energy is uniformly bounded in \gamma .
This has some basic implications: the ui cannot be too far away from the xi and not
too far away from each other.

2. We then study a subset of points \{ x1, . . . , xn\} contained in a leaf of the tree. This
means that their mutual affinity satisfies wij = 1, and the affinity between any of these
points to any other point not in the leaf of the partition is at most \varepsilon .

3. We then focus exclusively on these point sets and prove that for \gamma sufficiently large,
these sets are necessarily fused in a point. This is where Lemma 3.2 will be applied.

4. Once we establish that for \gamma sufficiently large, the point sets in the leaf are fused
into exactly one point as desired, the full statement essentially follows by induction
since these fused points interact exactly as individual points used to; having common
parents in the tree becomes the next-level analogue of being associated to the same
leaf. The result then follows.

Proof. We introduce the energy of the minimal energy configuration for \gamma > 0 as

E(\gamma ) = inf
u

E\gamma (u) = inf
u

\left[  n\sum 
i=1

\| xi  - ui\| 2 + \gamma 
\sum 
i<j

wij\| ui  - uj\| 

\right]  .

By setting u1 = u2 = \cdot \cdot \cdot = un and putting these points in the center of mass of \{ x1, . . . , xn\} ,
we observe that this energy is uniformly bounded for all \gamma :

E\mathrm{s}\mathrm{u}\mathrm{p} = sup
\gamma >0

E(\gamma ) \leq 
n\sum 

i=1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| xi  - 1

n

n\sum 
i=1

xi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

< \infty .

We decompose the energy functional E(\gamma ) as

E(\gamma ) = E1(\gamma ) + E2(\gamma ),(4.6)

where

E1(\gamma ) =

n\sum 
i=1

\| xi  - ui\| 2 + \gamma 
\sum 

(i,j)\in \scrE 1

\| ui  - uj\| ,

where \scrE 1 = \{ (i, j) : wij = 1\} , and

E2(\gamma ) = \gamma 
\sum 

(i,j)\in \scrE 2

wij\| ui  - uj\| ,

where \scrE 2 = \{ (i, j) : wij \leq \varepsilon < 1\} . The decomposition (4.6) makes explicit that, for \varepsilon suffi-
ciently small, the functional E2(\gamma ) can be interpreted as an error term, while the dominant
dynamics are determined by E1(\gamma ). We now claim that for \gamma sufficiently large (where suffi-
ciently large depends on everything except the parameter \varepsilon ) any subset of the points ui whose
mutual affinities are 1 (i.e., all the members of one of the leaves in the tree) are fused in a
point. The argument can be made quantitative, and we will give an explicit bound on \gamma that
will be sufficient.D
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We will now ensure that we can assume that all points are distinct. The energy E is a
continuous functional. This means that we can move any potentially clumped points apart
by accepting an arbitrarily small increase of energy; the remainder of the argument works as
follows: if points happen to be clumped together---not in exactly one point, but in several---
then we may move all of them an arbitrarily small bit. We can accept an arbitrarily small
increase of energy as long as we are able to then deduce a definite decrease in energy afterwards
(that will depend on the diameter of the ui); this contradiction shows that the clumping has
to occur in exactly one point. The next step in the argument is dynamical: we compute the
effect of moving one of the points an infinitesimal amount (this is already using the assumption
that all ui are distinct). Reusing the computation in (3.2), we see that\biggl\langle 

\partial E

\partial uj
, v

\biggr\rangle 
= 2 \langle uj  - xj , v\rangle  - \gamma 

n\sum 
i=1

i \not =j,(i,j)\in \scrE 1

\biggl\langle 
ui  - uj
\| ui  - uj\| 

, v

\biggr\rangle 
(4.7)

+

\Biggl\langle 
\partial 

\partial uj
\gamma 

\sum 
(i,j)\in \scrE 2

wij\| ui  - uj\| , v

\Biggr\rangle 
.

The first term on the right-hand side of (4.7) is bounded above by

2 | \langle uj  - xj , v\rangle | \leq 2\| xj  - uj\| \leq 2
\sqrt{} 

E\mathrm{s}\mathrm{u}\mathrm{p},(4.8)

and the third term on the right-hand side of (4.7) is bounded above by\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \partial 

\partial uj
\gamma 

\sum 
(i,j)\in \scrE 2

wij\| ui  - uj\| 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| = \gamma 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 

i:(i,j)\in \scrE 2,i \not =j

wij
ui  - uj

\| ui  - uj\| 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \leq \gamma \varepsilon n.(4.9)

Lemma 3.2 guarantees that there exists uj for which the second term on the right-hand
side of (4.7) is

 - \gamma 

n\sum 
i=1

i \not =j,(i,j)\in \scrE 1

\biggl\langle 
ui  - uj
\| ui  - uj\| 

, v

\biggr\rangle 
\leq  - \gamma 

4
\# \{ 1 \leq i \leq n : (i, j) \in \scrE 1\} .

The proof of Lemma 3.1 is even stronger and guarantees that if \| ui - uj\| = diam \{ u1, . . . , un\} ,
then either ui or uj has the desired property and can be moved in a suitable direction v.
Plugging the uj and v from Lemma 3.1 into both sides of (4.7) and applying inequalities (4.8)
and (4.9), we arrive at the following inequality:\biggl\langle 

\partial E

\partial uj
, v

\biggr\rangle 
\leq D(\gamma ) = 2

\sqrt{} 
E\mathrm{s}\mathrm{u}\mathrm{p} + \gamma \varepsilon n - \gamma 

4
\# \{ 1 \leq i \leq n : (i, j) \in \scrE 1\} .(4.10)

A crucial observation is that for

\varepsilon <
1

4n
\# \{ 1 \leq i \leq n : (i, j) \in \scrE 1\} 
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398 ERIC C. CHI AND STEFAN STEINERBERGER

we can conclude the existence of \gamma sufficiently large (depending on all the other parameters)
so that D(\gamma ) < 0. This, however, means the point configuration \{ u1, . . . , un\} cannot be a
minimizer of the functional since we found a point uj and a direction v such that moving
uj into direction v decreases the functional. This is a contradiction unless we are somehow
forbidden to apply Lemma 3.2: the only assumption in Lemma 3.2 is that not all points ui
are in the same place. Thus we see that, for \gamma sufficiently large, all points in \scrE 1 are fused. A
simple computation shows that these points have to be fused for all

\gamma \geq 
4
\sqrt{} 

E\mathrm{s}\mathrm{u}\mathrm{p}

\# \{ 1 \leq i \leq n : (i, j) \in \scrE 1\}  - 4\varepsilon n
.

(This lower bound is not sharp; in practice, points will already be fused for smaller values of
\gamma .) A careful inspection of the proof shows that we do not require wij = 1 for points in the
same partition: it suffices if 1 \leq wij \leq c for some constant c if subsequent parameter choices
of \gamma are allowed to depend on that. The full statement now follows by induction: points in
leaves become a single point, their parent structure determines the next collection of leaves,
and the product of their affinities determines the new affinities. Since there are only finitely
many levels to the tree, the process eventually terminates.

5. Extensions of the main theorem. The proof of Theorem 2.1 relies on rather elementary
analysis and consequently is quite flexible. Indeed, the proof can be immediately extended to
more general notions of energy of the type

E\gamma (u) = \phi (x1, . . . , xn, u1, . . . , un) + \gamma 
\sum 
i<j

wij \| ui  - uj\| X ,

where X is an arbitrary norm on \BbbR p and \phi is assumed to satisfy the following properties:
1. The function \phi : \BbbR p\times n \rightarrow \BbbR \geq 0 is differentiable and enforces some degree of data-fidelity

and compactness. More precisely, at one extreme \phi should be minimized when ui = xi;
for example, \phi is nonnegative for all u and \phi (x1, . . . , xn, x1, . . . , xn) = 0. At the other
extreme, \phi should diverge whenever \| u\| diverges. We want \phi to have the property
of ensuring that minimizing the energy implies that all ui are trapped in a universal
convex set (determined by the xi but independent of \gamma ). This amounts to a type of
growth condition on \phi , and many of the functions one would canonically choose will
have that property.

2. For all u for which

\phi (x1, . . . , xn, u1, . . . , un) + \gamma 

n\sum 
i,j=1

wij \| ui  - uj\| X \leq inf
x\in \BbbR p

\phi (x1, . . . , xn, x, . . . , x),

we have \bigm\| \bigm\| \bigm\| \bigm\| \partial 

\partial ui
\phi (x1, . . . , xn, u1, . . . , un)

\bigm\| \bigm\| \bigm\| \bigm\| \leq c,

where c depends only on \gamma and \{ x1. . . . , xn\} .D
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The argument proceeds in exactly the same way and makes crucial use of the fact that
any two norms in a finite-dimensional Euclidean space are equivalent up to constants, namely,

c5\| x\| \ell 2 \leq \| x\| X \leq c6\| x\| \ell 2 .

Since constants can always be absorbed in \gamma , this reduces to our case, namely, X = \ell 2.

Proof (sketch of the argument). Setting all ui = x and minimizing over x implies that the
energy is uniformly bounded in \gamma (with a bound depending only on \{ x1, . . . , xn\} ). Since the
norm X is comparable to the Euclidean norm, this implies that any minimizing configuration
\{ u1, . . . , un\} has to have a bounded diameter (with a bound depending only on \{ x1, . . . , xn\} ).
Then, for \gamma sufficiently large (depending on c), Lemma 3.1 implies a direction of decay and
thus points are eventually fused. We leave the precise details to the interested reader.

We close this section by noting that the generality of our result opens the door to in-
triguing applications. For example, one potential application of our extension is to construct
partition trees of regression coefficients in clustered regression [5, 22, 39, 48]. We leave these
investigations to future work.

6. Convex clustering in high-dimensional spaces. We now briefly provide some practical
guidance in using convex clustering in high-dimensional spaces. Beyer et al. showed in [4]
that over a broad class of data distributions, as the dimension of the ambient space increases,
distances from a point to its nearest neighbors become indistinguishable from distances to
its farthest neighbors. Thus, at first glance, it is unclear whether tree organizations can be
recovered from high-dimensional data using convex clustering, a method in which distance
metrics play a central role. Fortunately, many high-dimensional data sets encountered in
engineering and science can be approximated reliably by a lower-dimensional representation
or embedding. In some cases, high-dimensional data consist of many features that contain little
to no information about the clustering structure and should be dropped. In this case, one may
consider computing a sparse convex clustering solution path [46]. In other cases, where there
are more nuanced relationships among most or even all the features, we may turn to nonlinear
dimension reduction methods. Indeed, manifold learning [3, 13, 15, 43, 35] has proven to be
effective as a nonlinear dimension reduction technique in many scientific domains where very
high-dimensional measurements are recorded such as in bioinformatics [17, 20, 27, 50] and
neuroscience [7, 6, 8, 36, 40, 45]. Upon some reflection, this is not surprising, as these studies
collect high-dimensional data that are generated from natural processes that are subject to
physical constraints and are thus intrinsically low-dimensional.

In light of these observations, we recommend the following simple strategy. First, embed
high-dimensional data into a low-dimensional space, and then compute a convex clustering
solution path using the low-dimensional representation of the data. This strategy is especially
natural if one uses diffusion maps, since the diffusion distance between two points in high
dimensions can be approximated by the Euclidean distance in the lower-dimensional diffusion
maps space [13]. Once points are embedded in the diffusion maps space, one can use Gaussian
kernel affinities and compute the convex clustering solution path using the Euclidean norm in
the regularization term.D
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7. Discussion. In this paper, we answered the question of when the convex clustering
solution path can recover a tree. The key to ensuring the recovery of a well-nested partition
tree is the use of affinities that encourage the fusions within a folder before fusions with
higher level folders and so on as the tuning parameter \gamma increases. By choosing the edge
weight parameter \varepsilon sufficiently small, different folders have very little incentive to interact,
and the optimization problem is essentially decoupled. As \gamma increases, the same procedure
repeats itself.

We end with a discussion on the relationship between convex and nonconvex formulations
of penalized regression based clustering. Although we focus in this paper on the ability of
convex clustering to recover a potentially deep hierarchy of nested folders, our result also sheds
light on a gap in theory and practice that convex clustering's performance can be significantly
improved when using nonuniform data-driven affinities when seeking a shallow or single level
of nested folders. In practice, Gaussian kernel affinities have been observed to work well, but
these affinity choices have until now lacked formal justification.

Indeed, nonuniform affinities provide the link between convex clustering and other penal-
ized regression-based clustering methods that use folded concave penalties. It is well known
that 1-norm penalties lead to parameter estimates that are shrunk towards zero. This shrink-
age toward zero is the price for simultaneously estimating the support, or locations of the
nonzero entries, in a sparse vector as well as the values of the nonzero entries. In the con-
text of convex clustering, the centroid estimates ui are shrunk towards the grand mean x.
Consequently, others have proposed employing a folded concave penalty instead of a norm
in the regularization terms [31, 26, 49]. Folded concave penalties induce milder shrinkage in
exchange for giving up convexity in the optimization problem, which means that iterative
algorithms can typically at best converge only to a KKT point.

Suppose we were to employ a folded concave penalty, such as the smoothly clipped absolute
deviation [16] or minimax concave penalty [53], and seek to minimize the following alternative
objective to (1.1):

\~E\gamma (u) =
1

2

n\sum 
i=1

\| xi  - ui\| 2 + \gamma 
\sum 
i<j

\varphi (\| ui  - uj\| ) ,(7.1)

where each \varphi : [0,\infty ) \mapsto \rightarrow [0,\infty ) has the following properties: (i) \varphi is concave and differentiable
on (0,\infty ), (ii) \varphi vanishes at the origin, and (iii) the directional derivative of \varphi exists and is
positive at the origin.

Since \varphi is concave and differentiable, for all positive z and \~z

\varphi (z) \leq \varphi (\~z) + \varphi \prime (\~z)(z  - \~z).

In other words, the first order Taylor expansion of a differentiable concave function \varphi provides
a tight global upper bound at the expansion point \~z. Thus, we can construct a function that
is a tight upper bound of the function \~E\gamma (u),

g\gamma (u | \~u) = 1

2

n\sum 
i=1

\| xi  - ui\| 2 + \gamma 
\sum 
i<j

wij\| ui  - uj\| + c7,(7.2)
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where c7 is a constant that does not depend on u, and wij are affinities that depend on \~u,
namely,

wij = \varphi \prime (\| \~ui  - \~uj\| ) .

Note that if we take \~ui to be the data xi, and \varphi (z) to be the follwoing variation on the error
function,

\varphi (z) =

\int z

0
e - 

\alpha 2

\sigma d\alpha ,

then the bounding function given in (7.2) coincides, up to an irrelevant shift and scaling, with
the convex clustering objective using Gaussian kernel affinities.

The function g\gamma (u | \~u) is said to majorize the function \~E\gamma (u) at the point \~u [24], and
minimizing it corresponds to performing one step of the local linear-approximation algorithm
[37, 55], which is a special case of the majorization-minimization algorithm [24]. Thus, we
can see that employing Gaussian kernel affinities corresponds to taking one step of a local
linear-approximation algorithm applied to a penalized regression-based clustering with an
appropriately chosen folded concave penalty.

In practice, variants that employ folded concave penalties take multiple steps of the local
linear approximation. So at the kth step,

u(k) = argmin
u

1

2

n\sum 
i=1

\| xi  - ui\| 2 + \gamma 
\sum 
i<j

\varphi \prime 
\Bigl( 
\| u(k - 1)

i  - u
(k - 1)
j \| 

\Bigr) 
\| ui  - uj\| .

As affinities represent a data-driven way to approximate the partition tree, one can see that
employing folded concave penalties corresponds to implicitly recomputing the affinities, which
corresponds to refining our estimate of the partition tree based on the data.

In light of this current work, this last observation raises two interesting questions: (i) what
partition tree is being recovered by a solution path of a penalized regression-based clustering
method that uses a folded concave penalty, and (ii) when is the recovered partition tree
substantially different from the tree corresponding to a one-step local linear approximation?
We leave these questions to future work.

Appendix A. Example of nontree solution path. We recreate a configuration of points
in \BbbR 2 and affinities similar to those used in [19], which yield a solution path that is not a
tree. Consider the four points x1 = ( - 0.25, 3), x2 = (0.25, 3), x3 = (2, 0), and x4 = ( - 2, 0)
and employ affinities w12 = 9, w13 = w24 = 30, and wij = 1 for all remaining i and j pairs.
Figure 8 shows snapshots of the evolution of the solution paths for u1(\gamma ) (red), u2(\gamma ) (blue),
u3(\gamma ) (green), and u4(\gamma ) (purple) as \gamma increases. We see that u1(\gamma ) = u2(\gamma ) for a continuous
range of \gamma greater than 10 - 2.05 and strictly less than 10 - 1.64 (Figures 8(d) and 8(e)) but
that u1(\gamma ) \not = u2(\gamma ) for a continuous range of \gamma greater than 10 - 1.64 and less than 10 - 0.85

(Figures 8(e), 8(f), and 8(g)).
We emphasize that in order to generate this degenerate solution path, we needed to use

affinities that do not reflect the geometry of the data. The largest affinities, w13 and w24, are
between the two pairs of points that are farthest apart from each other.
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Figure 8. Snapshots of the solution path as the parameter \gamma increases.

Appendix B. Comparison of unit versus Gaussian kernel affinities on vote data. To
illustrate the superiority of Gaussian kernel affinities over unit affinities often observed on real
data, we compute the convex clustering solution paths under the two kinds of affinities on
U.S. Senate voting data in 2001 [1, 14]. We removed duplicate voting records, restricting our
attention to 29 senators---15 Democrats, 13 Republicans, and 1 Independent (Jim Jeffords,
who was a Republican prior to 2001)---and their votes on 13 issues ranging over domestic,
foreign, economic, military, environmental, and social concerns. The raw data consisted of 29
binary vectors of length 13, which we centered and scaled. Figure 9 shows the solution paths
under the two kinds of affinities; for visualization purposes we projected ui(\gamma ) \in \BbbR 13 onto the
first two principal components of the centered and scaled data matrix. We color coded the
solution paths to reflect senator party affiliations: Democrats in blue, Republicans in red, and
Independent in green. As an aside, we identify an outlying Democrat in Zell Miller, who had
a track record for supporting Republican policies during his tenure. He notably supported
Republican President George W. Bush against John Kerry, the Democratic nominee in the
2004 presidential election.

Figures 9(a) and 9(b) show the resulting clustering paths under unit affinities, wij = 1 for
all i and j, and Gaussian kernel affinities, respectively. In the latter case, we use a common
data-driven strategy of choosing a local scale parameter \sigma ij that is pair dependent [52], namely,

wij = exp

\biggl( 
 - \| xi  - xj\| 22

\sigma ij

\biggr) 
.
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(b) Gaussian kernel affinities.

Figure 9. U.S. Senate vote data: Solution path as the parameter \gamma increases.

We first compute a local measure of scale \sigma i, which is the median Euclidean distance between
the ith point xi and its 5 nearest neighbors. We then set \sigma ij = \sigma i\sigma j .

The solution path in Figure 9(a) exhibits exactly one fusion event as \gamma increases, namely,
at the end of the solution path. In contrast, the solution path in Figure 9(b) exhibits fusions
that initially group together senators in their respective parties, before the two main groups
fuse at the end of the solution path. Figures 10(a) and 10(b) show points along the solution
paths obtained from unit and Gaussian kernel affinities, respectively, color coded according
to the number of unique ui(\gamma ) as \gamma varies. Figures 10(c) and 10(d) plot the number of unique
ui(\gamma ) as \gamma varies under unit and Gaussian kernel affinities, respectively. Indeed, we see that in
this real example, the unit affinities produce a rather useless tree, namely, one with no nesting
at all. In contrast, the Gaussian kernel affinities produce a tree that organizes the senators
into partitions that respect party affiliations. Figure 10(b) also shows that John Chaffee, who
was one of the more liberal Republicans, fuses somewhat later to the Republican group and
also shows that John Breaux, whose centrist voting tendencies at times led Republicans to
seek his help in swaying a few critical Democratic votes, fuses somewhat later to the Democrat
group.

Appendix C. Proof of Corollary 3.3. Lemma 3.1 guarantees the existence of a point u,
call it \~u1, and viewing direction vector v1 that satisfies inequality (3.1). Remove \~u1 from the
set S = \{ u1, . . . , un\} and apply Lemma 3.1 to the new set S\setminus S1, where S1 = \{ \~u1\} . Repeat this
procedure k times and let Sk denote the set of k points, \{ \~u1, . . . , \~uk\} , that satisfy inequality
(3.1) for the sets S, S\setminus S1, . . . , S\setminus Sk - 1, respectively. Lemma 3.1 guarantees the existence of aD
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Figure 10. U.S. Senate vote data: The number of unique ui(\gamma ) as a function of \gamma .

point u \in S\setminus Sk and viewing direction vector v such that

1

n - k

\sum 
ui\in S\setminus Sk

ui \not =u

\biggl\langle 
ui  - u

\| ui  - u\| 
, v

\biggr\rangle 
\geq 1

2
.(C.1)

The Cauchy--Bunyakovsky--Schwarz inequality tells us that\biggl\langle 
ui  - u

\| ui  - u\| 
, v

\biggr\rangle 
\geq  - 1(C.2)

for all ui \in Sk. Inequalities (C.1) and (C.2) together imply that

n\sum 
i=1
ui \not =u

\biggl\langle 
ui  - u

\| ui  - u\| 
, v

\biggr\rangle 
\geq n - k

2
 - k.(C.3)
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Finally, for k \leq n/6, we see that the right-hand side of (C.3) is bounded below by n/4, which
implies the desired result.

Acknowledgment. We thank Raphy Coifman for pointing out Corollary 3.3.
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