
A Look at the Generalized Heron Problem
through the Lens of

Majorization-Minimization

Eric C. Chi and Kenneth Lange

Abstract. In a recent issue of this MONTHLY, Mordukhovich, Nam, and Salinas pose and
solve an interesting non-differentiable generalization of the Heron problem in the framework
of modern convex analysis. In the generalized Heron problem, we are given k + 1 closed con-
vex sets in Rd equipped with its Euclidean norm and asked to find the point in the last set
such that the sum of the distances to the first k sets is minimal. In later work, the authors gen-
eralize the Heron problem even further, relax its convexity assumptions, study its theoretical
properties, and pursue subgradient algorithms for solving the convex case. Here, we revisit
the original problem solely from the numerical perspective. By exploiting the majorization-
minimization (MM) principle of computational statistics and rudimentary techniques from
differential calculus, we are able to construct a very fast algorithm for solving the Euclidean
version of the generalized Heron problem.

1. INTRODUCTION. In a recent article in this JOURNAL, Mordukhovich et al. [22]
presented the following generalization of the classical Heron problem. Given a col-
lection of closed convex sets {C1, . . . ,Ck} in Rd , find a point x in the closed convex
set S ⊂ Rd such that the sum of the Euclidean distances from x to C1 through Ck is
minimal. In other words,

minimize D(x) :=
k∑

i=1

d(x,Ci ) subject to x ∈ S, (1)

where d(x, �) = inf{‖x− y‖ : y ∈ �}.
A rich history of special cases motivates this problem formulation. When k = 2, C1

and C2 are singletons, and S is a line, we recover the problem originally posed by the
ancient mathematician Heron of Alexandria. The special case where k = 3; C1,C2,
and C3 are singletons; and S = R2, was suggested by Fermat nearly 400 years ago
and solved by Torricelli [13]. In his Doctrine and Application of Fluxions, Simpson
generalized the distances to weighted distances. In the 19th century, Steiner made sev-
eral fundamental contributions, and his name is sometimes attached to the problem
[9, 11]. At the turn of the 20th century, the German economist Weber generalized Fer-
mat’s problem to an arbitrary number of singleton sets Ci . Weiszfeld published the
first iterative algorithm1 for solving the Fermat–Weber problem in 1937 [28, 29]. In
the modern era, the Fermat–Weber problem has enjoyed a renaissance in various com-
putational guises. Both the problem and associated algorithms serve as the starting
point for many advanced models in location theory [18, 30].

The connections between celebrated problems such as the Fermat–Weber problem
and the generalized Heron problem were noted earlier by Mordukhovich et al. [23].

http://dx.doi.org/10.4169/amer.math.monthly.121.02.095
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1Kuhn [15] points out that Weiszfeld’s algorithm has been rediscovered several times.
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In subsequent papers [21, 23], they generalize the Heron problem further to arbitrary
closed sets C1, . . . ,Ck and S in a Banach space. Readers are referred to their papers
for a clear treatment of how to solve these abstract versions of the generalized Heron
problem with state-of-the-art tools from variational analysis.

Here, we restrict our attention to the special case of Euclidean distances presented
by Mordukhovich et al. [23]. Our purpose is to take a second look at this simple, yet in
our opinion, most pertinent version of the problem from the perspective of algorithm
design. Mordukhovich et al. [21, 22, 23] present an iterative subgradient algorithm
for numerically solving problem (1) and its generalizations, a robust choice when the
desire is to assume nothing beyond the convexity of the objective function. Indeed,
the subgradient algorithm works if the Euclidean norm is exchanged for an arbitrary
norm. However, it is natural to wonder if there might be better alternatives for the
finite-dimensional version of the problem with Euclidean distances. Here, we present
one that generalizes Weiszfeld’s algorithm by invoking the majorization-minimization
(MM) principle from computational statistics. Although the new algorithm displays
the same kind of singularities that plagued Weiszfeld’s algorithm [15], the dilemmas
can be resolved by slightly perturbing problem (1), which we refer to as the generalized
Heron problem for the remainder of this article. In the limit, we recover the solution
to the unperturbed problem. As might be expected, it pays to exploit special structure
in a problem. The new MM algorithm is vastly superior in computational speed to the
subgradient algorithms for Euclidean distances.

Solving a perturbed version of the problem by the MM principle yields extra div-
idends as well. The convergence of MM algorithms on smooth problems is well
understood theoretically. This fact enables us to show that solutions to the original
problem can be characterized without appealing to the full machinery of convex anal-
ysis dealing with non-differentiable functions and their subgradients. Although this
body of mathematical knowledge is definitely worth learning, it is remarkable how
much progress can be made with simple tools. The good news is that we demonstrate
that crafting an iterative numerical solver for problem (1) is well within the scope
of classical differential calculus. Our resolution can be understood by undergraduate
mathematics majors.

As a brief summary of things to come, we begin by recalling background material
on the MM principle and convex analysis of differentiable functions. This is followed
with a derivation of the MM algorithm for problem (1) and consideration of a few
relevant numerical examples. We end by proving the convergence of the algorithm and
characterizing solution points.

2. THE MM PRINCIPLE. Although first articulated by the numerical analysts Or-
tega and Rheinboldt [24], the MM principle currently enjoys its greatest vogue in
computational statistics [1, 17]. The basic idea is to convert a hard optimization prob-
lem (for example, non-differentiable) into a sequence of simpler ones (for example,
smooth). The MM principle requires majorizing the objective function f (y) by a surro-
gate function g(y | x) anchored at the current point x. Majorization is a combination of
the tangency condition g(x | x) = f (x) and the domination condition g(y | x) ≥ f (y)
for all y ∈ Rd . The associated MM algorithm is defined by the iterates

xk+1 := arg min
y∈S

g(y | xk). (2)

Because

f (xk+1) ≤ g(xk+1 | xk) ≤ g(xk | xk) = f (xk), (3)
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the MM iterates generate a descent algorithm driving the objective function downhill.
Constraint satisfaction is enforced in finding xk+1. Under appropriate regularity condi-
tions, an MM algorithm is guaranteed to converge to a local minimum of the original
problem [16].

3. BACKGROUND ON CONVEX ANALYSIS. As a prelude to deriving an MM
algorithm, we review some basic facts from convex analysis in the limited context of
differentiable functions. Deeper treatments can be found in the references [3, 4, 12,
25, 26]. Throughout this article, we denote the standard dot product between vectors
a and b by 〈a,b〉. Recall that a differentiable function f (y) is convex if and only if its
domain S is convex and

f (y) ≥ f (x)+ 〈∇ f (x), y− x〉, (4)

for all x, y ∈ S. Provided f (x) is twice differentiable, it is convex when its second
differential d2 f (x) is positive semidefinite for all x and strictly convex when d2 f (x)
is positive definite for all x. These characterizations are a direct consequence of ex-
ecuting a second-order Taylor expansion of f (y) and applying the supporting hyper-
plane inequality (4). The supporting hyperplane inequality (4) also leads to a succinct
necessary and sufficient condition for a global minimum. A point x ∈ S is a global
minimizer of f (y) on S if and only if

〈∇ f (x), y− x〉 ≥ 0 (5)

for all y ∈ S. Intuitively speaking, every direction pointing into S must lead uphill.
We conclude this section by reviewing projection operators [16]. Denote the pro-

jection of x onto a set � ⊂ Rd by P�(x). By definition, P�(x) satisfies

P�(x) := arg min
y∈�
‖x− y‖.

If � is a closed convex set in Rd , then P�(x) exists and is unique. Furthermore, the
projection operator is non-expansive in the sense that

‖P�(x)− P�(y)‖ ≤ ‖x− y‖

for all x, y ∈ Rd . Non-expansion clearly entails continuity. Explicit formulas for the
projection operator P�(x) exist when � is a box, Euclidean ball, hyperplane, or half-
space. Fast algorithms for computing P�(x) exist for the unit simplex, the `1 ball, and
the cone of positive semidefinite matrices [10, 20].

The projection operator and the distance function are intimately related through the
gradient identity∇d(x,C)2 = 2[x− PC(x)]. A standard proof of this fact can be found
in [12, p. 181]. If d(x,C)2 > 0, then the chain rule gives

∇d(x,C) = ∇
√

d(x,C)2 =
x− PC(x)

d(x,C)
.

On the interior of C , it is obvious that ∇d(x,C) = 0. In contrast, differentiability of
d(x,C) at boundary points of C is not guaranteed.
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4. AN MM ALGORITHM FOR THE HERON PROBLEM. Since it adds little
additional overhead, we recast problem (1) in the Simpson form

minimize D(x) :=
k∑

i=1

γi d(x,Ci ) subject to x ∈ S, (6)

involving a convex combination of the distances d(x,Ci ) with positive weights γi ,
as suggested in [23]. We first derive an MM algorithm for solving problem (6) when
S ∩ Ci = ∅ for all i . This exercise will set the stage for attacking the more general
case where S intersects one or more of the Ci . In practice, quadratic majorization
is desirable because it promotes exact solution of the minimization step of the MM
algorithm. It takes two successive majorizations to achieve quadratic majorization in
our setting. The first is the simple majorization

d(x,Ci ) ≤ ‖x− PCi (xm)‖,

flowing directly from the definition of the distance function. The second is the ma-
jorization

√
u ≤
√

um +
1

2
√

um
(u − um) (7)

of the concave function
√

u on the interval (0,∞). The combination of these two
majorizations yields the quadratic majorization

d(x,Ci ) ≤ ‖xm − PCi (xm)‖ +
‖x− PCi (xm)‖

2
− ‖xm − PCi (xm)‖

2

2‖xm − PCi (xm)‖
. (8)

Summing these majorizations over i leads to quadratic majorization of D(x) and ulti-
mately to the MM algorithm map

ψ(x) = arg min
z∈S

{
1

2

k∑
i=1

wi‖z− PCi (x)‖
2

}

with weights wi = γi‖x − PCi (x)‖
−1. When the Ci are singletons and S = Rd , the

map ψ(x) implements Weiszfeld’s algorithm for solving the Fermat–Weber problem
[28, 29].

The quadratic majorization of D(x) just derived can be rewritten as

g(x | xm) =
1

2

(
k∑

i=1

wi

)∥∥∥x−
∑

i

αi PCi (xm)

∥∥∥2
+ c,

where

αi =
wi∑k
i=1wi

depend on weights wi = γi‖xm − PCi (xm)‖
−1 and c is a constant that does not depend

on x. Thus, the MM update boils down to projection onto S of a convex combination
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of the projections of the previous iterate onto the sets Ci ; in symbols, we have

xm+1 = PS

[∑
i

αi PCi (xm)
]
. (9)

The majorization (8) involves dividing by 0 when xm belongs to Ci . This singularity
also bedevils Weiszfeld’s algorithm. Fortunately, perturbation of the objective function
salvages the situation. Simply replace the function D(x) by the related function

Dε(x) =
k∑

j=1

γ j

√
d(x,C j )2 + ε

for ε small and positive. Ben-Tal and Teboulle [2] cover further examples of this per-
turbation strategy. In any case, observe that the smooth function fε(u) =

√
u2 + ε has

derivatives

f ′ε(u) =
u

√
u2 + ε

, f ′′ε (u) =
ε

(u2 + ε)3/2
,

and is therefore strictly increasing and strictly convex on the interval [0,∞). Hence,
the function Dε(x) is also convex. Because

√
u2 + ε −

√
ε is a good approximation to

u ≥ 0, the solutions of the two problems should be close. In fact, we will show later
that the minimum point of Dε(x) tends to the minimum point of D(x) as ε tends to 0.
In the presence of multiple minima, this claim must be rephrased in terms of cluster
points.

The majorization d(x,C j ) ≤ ‖x − PC j (xm)‖ around the current iterate xm yields
the majorization √

d(x,C j )2 + ε ≤

√
‖x− PC j (xm)‖2 + ε.

Application of the majorization (7) implies the further majorization

Dε(x) ≤
1

2

k∑
j=1

γ j

‖x− PC j (xm)‖
2√

‖xm − PC j (xm)‖2 + ε
+ c,

where c is an irrelevant constant. The corresponding MM update xm+1 is identical to
the previous MM update (9) except for one difference. The weightswi are now defined
by the benign formula

wi =
γi√

‖xm − PCi (xm)‖2 + ε
,

involving no singularity.

5. EXAMPLES. We now consider four examples illustrating the performance of the
MM algorithm and framing our expectations for convergence. The subgradient algo-
rithm [22] serves as a benchmark for comparison throughout. This algorithm relies on
the updates
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xm+1 = PS

[
xm − ηm

k∑
i=1

γi vim

]
,

where

vim =

{
xm−PCi (xm )

d(xm ,Ci )
if xm 6∈ Ci

0 if xm ∈ Ci ,

and the nonnegative constants ηm satisfy
∑
∞

m=1 ηm = ∞ and
∑
∞

m=1 η
2
m < ∞. The

weights γi equal 1 in all examples except the last.

5.1. Five Cubes and a Ball in R3. Our first example is taken from [22]. This three-
dimensional example involves five cubes Ci with side lengths equal to 2 and centers
(0,−4, 0), (−4, 2,−3), (−3,−4, 2), (−5, 4, 4), and (−1, 8, 1). The set S is a ball
with center (0, 2, 0) and radius 1. Iteration commences at the point x1 = (0, 2, 0) ∈ S
and takes subgradient steps with ηm = 1/m. Table 1 shows the MM iterates with
ε = 0. Convergence to machine precision occurs within 30 iterations. In contrast,
Table 2 shows that parameter values (x1, x2, x3) are still changing after 106 subgra-
dient iterates. For brevity, we omit a second example of four squares and a disk in R2

from the same source [22]. In this example, the superiority of the MM algorithm over
the subgradient algorithm is equally evident.

Table 1. Cubes and ball example in R3: the MM algorithm

Iteration x1 x2 x3

1 0.00000000000000 2.00000000000000 0.00000000000000
2 −0.93546738305698 1.66164748416805 0.10207032020482
3 −0.92881282698649 1.63915389878166 0.08424264751830
4 −0.92645373003448 1.63220797263449 0.08007815377225
5 −0.92567602259658 1.63004821970935 0.07911751670489
6 −0.92542515217106 1.62937435413374 0.07889815178685
7 −0.92534495711879 1.62916364685109 0.07884864943702
8 −0.92531944712805 1.62909766226627 0.07883765997470
9 −0.92531135783449 1.62907697582185 0.07883527888603

10 −0.92530879826106 1.62907048520349 0.07883478238381
20 −0.92530761702316 1.62906751412014 0.07883466748783
30 −0.92530761701184 1.62906751409212 0.07883466748878
50 −0.92530761701184 1.62906751409212 0.07883466748878

Table 2. Cubes and ball example in R3: the Subgradient algorithm

Iteration x1 x2 x3

1 0.00000000000000 2.00000000000000 0.00000000000000
10 −0.92583298353433 1.63051788239768 0.07947484741743

100 −0.92531325048300 1.62908232435160 0.07883822912883
1,000 −0.92530767419684 1.62906766065418 0.07883468589312

10,000 −0.92530761758555 1.62906751554109 0.07883466757273
100,000 −0.92530761701755 1.62906751410641 0.07883466748904

1,000,000 −0.92530761701233 1.62906751409334 0.07883466748881
1,500,000 −0.92530761701231 1.62906751409328 0.07883466748881
2,000,000 −0.92530761701229 1.62906751409324 0.07883466748881
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5.2. The Closest Point to Three Disks in R2. This example from [21] illustrates the
advantage of minimizing a sequence of approximating functions Dεm (x). The sets Ci

are three unit balls in R2 centered at (0, 2), (2, 0), and (−2, 0). The set S equals R2.
The minimum distance occurs at (0, 1), as can be easily verified by checking the opti-
mality conditions spelled out in Proposition 4.3 in [21]. Figure 1 displays the iteration
paths for 50 different starting values (dots) and their corresponding fixed point (the
square). Along the mth leg of the path, we set εm to be max{10−m, 10−16

}. The solu-
tion to the current problem is taken as the initial point for the next problem. All solution
paths initially converge to a point just below (0, 1) and then march collectively upward
to (0, 1). The passage of the MM iterates through the unit balls is facilitated by our
strategy of systematically reducing ε. Table 3 shows the subgradient and MM iterates
starting from the point (5,7).

–4

6

4

2

0

–2

–4 –2 0
x

2 4

y

Figure 1. Finding the closest point to three disks in R2

Table 3. Three disks example in R2 starting from (5,7)

Subgradient algorithm MM algorithm

Iteration x1 x2 Iteration x1 x2

10 0.7092649 1.2369866 10 0.2674080 0.7570688
100 0.0558764 0.9973310 100 0.0000000 0.7249706

1,000 0.0046862 0.9993844 1,000 0.0000000 0.9998002
10,000 0.0003955 0.9999274 1,800 0.0000000 0.9999999

100,000 0.0000334 0.9999957 1,850 0.0000000 1.0000000
1,000,000 0.0000028 0.9999998 1,900 0.0000000 1.0000000

5.3. Three Collinear Disks in R2. Here, we illustrate the behavior of the MM algo-
rithm when there is more than one solution. Consider two unit balls in R2 centered
at (2, 0) and (−2, 0), and take S to be the unit ball centered at the origin. There is
a continuum of solutions extending along the line segment from (−1, 0) to (1, 0), as
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Figure 2. An example with a continuum of solutions

can be verified by the optimality conditions provided by Theorem 3.2 in [22]. Figure 2
shows the iteration paths for 100 different initial values (dots) and their corresponding
fixed points (squares). In this example, we take ε = 0. Although the iterates are not
guaranteed to converge and may in principle cycle among multiple cluster points, this
behavior is not observed in practice. The iterates simply converge to different fixed
points depending on where they start. Table 4 compares the iterations for the sub-
gradient method and the MM algorithm starting from the point (1.5, 0.25). The two
algorithms converge to different solution points, but at drastically different rates.

Table 4. Three collinear disks example in R2 starting from (1.5, 0.25)

Subgradient algorithm MM algorithm

Iteration x1 x2 Iteration x1 x2

10,000 0.9997648 0.0000223 10 0.9941149 0.0001308
100,000 0.9997648 0.0000040 20 0.9941149 0.0000000

1,000,000 0.9997648 0.0000007 30 0.9941149 0.0000000

5.4. Kuhn’s Problem. Our last example was originally concocted by Kuhn [14] to
illustrate how Weiszfeld’s algorithm can stall when its iterates enter one of the sets
Ci . Although this event rarely occurs in practice, characterizing the initial conditions
under which it happens has been a subject of intense scrutiny [5, 6, 7, 8, 15]. The oc-
casional failure of Weiszfeld’s algorithm prompted Vardi and Zhang [27] to redesign
it. Their version preserves the descent property, but differs substantially from ours. In
any event, the example shown in Figure 3 involves two points with weights γi pro-
portional to 5 placed at (59, 0) and (20, 0) and two more points with weights pro-
portional to 13 placed at (−20, 48) and (−20,−48). The optimal point is the origin.
Starting at (44, 0), Weiszfeld’s algorithm stalls at (20, 0) after one iteration. Our MM
iterates (dots) with ε decreasing from 0.1 to 0, in contrast, move across (20.0) and cor-
rectly converge to (0, 0) to within machine precision in 99 steps. Table 5 compares the
progress achieved by the MM and subgradient methods. Note that when ε is 0.1, the
MM algorithm overshoots the true answer and then comes back to (0, 0) after setting ε
to be 0. The subgradient algorithm makes solid progress early but subsequently slows
down on this almost smooth problem.
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Figure 3. A problem where Weiszfeld’s algorithm fails to converge

Table 5. Kuhn’s problem

Subgradient algorithm MM algorithm

Iteration x1 x2 Iteration x1 x2

10 8.6984831 0.0000000 10 1.9448925 0.0000000
1,000 1.2966354 0.0000000 30 −0.0011998 0.0000000

100,000 0.1845171 0.0000000 60 −0.0012011 0.0000000
10,000,000 0.0259854 0.0000000 90 0.0000000 0.0000000

6. CONVERGENCE THEORY. Before embarking on a proof of convergence, it is
prudent to discuss whether a minimum point exists and is unique. Recall that a con-
tinuous function attains its minimum on a compact set. Thus, problem (6) possesses a
minimum whenever S is bounded. If S is unbounded, then we can substitute bound-
edness of one or more of the sets Ci . In this circumstance, D(x) is coercive in the
sense that lim‖x‖→∞ D(x) = ∞. As pointed out in Proposition 3.1 of [22], coercive-
ness is sufficient to guarantee existence. Because D(x) ≤ Dε(x), the perturbed crite-
rion Dε(x) is coercive whenever the original criterion D(x) is coercive. Henceforth,
we will assume that S or at least one of the Ci is bounded.

A strictly convex function possesses at most one minimum point on a convex set.
The function |x | shows that this sufficient condition for uniqueness is hardly necessary.
In the Fermat–Weber problem, where the closed convex sets Ci = {xi } are singletons,
the function D(x) is strictly convex if and only if the points xi are non-collinear. To
generalize this result, we require the sets Ci to be non-collinear. Geometrically, this
says that it is impossible to draw a straight line that passes through all of the Ci . Non-
collinearity can only be achieved when k > 2 and ∩k

i=1Ci = ∅. We also require the
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Ci to be strictly convex. A set C is said to be strictly convex if the interior of the line
segment [x, y] connecting two different points x and y of C lies in the interior of C .
Put another way, the boundary of C can contain no line segments. A singleton or a
closed ball is strictly convex, but a closed box is not.

Proposition 6.1. If the closed convex sets C1, . . . ,Ck are strictly convex but not
collinear, then D(x) is strictly convex.

Proof. Suppose the contrary is true, and choose x 6= y and α strictly between 0 and 1
so that

D[αx+ (1− α)y] = αD(x)+ (1− α)D(y). (10)

Let L be the line {sx+ (1− s)y : s ∈ R} passing through the points x and y. Then there
exists at least one C j such that L ∩ C j = ∅. In particular, x, y, and αx+ (1− α)y all
fall outside this C j . Equality (10) implies that

α‖x− PC j (x)‖ + (1− α)‖y− PC j (y)‖

= ‖αx+ (1− α)y− PC j [αx+ (1− α)y]‖

≤ ‖αx+ (1− α)y− αPC j (x)− (1− α)PC j (y)‖

≤ α‖x− PC j (x)‖ + (1− α)‖y− PC j (y)‖.

Since the projection of a point onto C j is unique, these sandwich inequalities entail

PC j [αx+ (1− α)y] = αPC j (x)+ (1− α)PC j (y).

If PC j (x) 6= PC j (y), then the strict convexity of C j implies the convex combination
αPC j (x) + (1 − α)PC j (y) is interior to C j . Hence, this point cannot be the clos-
est point to the external point αx + (1 − α)y. Therefore, consider the possibility
PC j (x) = PC j (y) = z. Equality can occur in the inequality

‖αx+ (1− α)y− z‖ ≤ α‖x− z‖ + (1− α)‖y− z‖

only when x− z = t (y− z) for some t 6= 1. This relation shows that

z =
1

1− t
x−

t

1− t
y

belongs to L ∩ C j , contradicting our hypothesis. Thus, D(x) is strictly convex.

The next result shows that the function Dε(x) inherits strict convexity from D(x).
Therefore, when D(x) is strictly convex, Dε(x) possesses a unique minimum point.

Proposition 6.2. If D(x) is strictly convex, then Dε(x) is also strictly convex.

Proof. Fix arbitrary x 6= y and α strictly between 0 and 1. The strict convexity of D(x)
implies that there is at least one j such that

d(αx+ (1− α)y,C j ) < αd(x,C j )+ (1− α)d(y,C j ).
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The strict inequality√
d(αx+ (1− α)y,C j )2 + ε <

√
[αd(x,C j )+ (1− α)d(y,C j )]2 + ε,

≤ α

√
d(x,C j )2 + ε + (1− α)

√
d(y,C j )2 + ε

follows because the function fε(u) =
√

u2 + ε is strictly increasing and convex. Sum-
ming over j gives the desired result.

We now clarify the relationship between the minima of the Dε(x) and D(x) func-
tions.

Proposition 6.3. For a sequence of constants εm tending to 0, let ym be a correspond-
ing sequence minimizing Dεm (x). If y is the unique minimum point of D(x), then ym

tends to y. If D(x) has multiple minima, then every cluster point of the sequence ym

minimizes D(x).

Proof. To prove the assertion, consider the inequalities

D(ym) ≤ Dεm (ym) ≤ Dεm (x) ≤ D1(x)

for any x ∈ S and εm ≤ 1. Taking limits along the appropriate subsequences proves
that the cluster points of the sequence ym minimize D(x). Convergence to a unique
minimum point y occurs, provided the sequence ym is bounded. If S is bounded, then
ym is bounded by definition. On the other hand, if any C j is bounded, then D(x) is
coercive, and the inequality D(ym) ≤ D1(x) forces ym to be bounded.

The convergence theory of MM algorithms hinges on the properties of the algo-
rithm map ψ(x) ≡ arg miny g(y | x). For easy reference, we state a simple version of
Meyer’s monotone convergence theorem [19] instrumental in proving convergence in
our setting.

Proposition 6.4. Let f (x) be a continuous function on a domain S and ψ(x) be a
continuous algorithm map from S into S satisfying f (ψ(x)) < f (x) for all x ∈ S with
ψ(x) 6= x. Suppose, for some initial point x0, that the set

L f (x0) ≡ {x ∈ S : f (x) ≤ f (x0)}

is compact. Then (a) all cluster points are fixed points ofψ(x), and (b) limm→∞‖xm+1 −

xm‖ = 0.

Note that Proposition 6.4 also ensures the existence of at least one cluster point
for the sequence of iterates xm+1 = ψ(xm). Additionally, the convergence of the MM
iterates (9) to a stationary point of f (x) follows immediately, provided the fixed points
of ψ(x) are stationary points of f (x), and ψ(x) possesses only finitely many fixed
points.

Let us verify the conditions of Proposition 6.4 for minimizing Dε(x). The function
Dε(x) is continuous on its domain S, and the set LDε (x0) is compact for any initial
point x0 since either S is compact or Dε(x) is coercive. The continuity of the algorithm
map follows immediately from the continuity of the projection mapping. Finally, we
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need to prove that Dε(ψ(x)) < Dε(x) whenever x 6= ψ(x). First, note that ψ(x) = x
if and only if the MM surrogate function satisfies gε(x | x) = miny gε(y | x). Since
gε(y | x) has a unique minimizer, the strict inequality gε(ψ(x) | x) < gε(x | x) holds
whenever x is not a fixed point of ψ . This forces a decrease in the objective function
Dε(x) and makes the MM algorithm strictly monotone outside the set of stationary
points.

We now argue that the fixed points of the algorithm map ψ(x) are stationary points
of Dε(x). We will show, in fact, that the two sets of points coincide. To accomplish
this, we need to determine the gradients of Dε(x) and gε(x | y). Recall that fε(u) is
strictly increasing and strictly convex. As a consequence, the functions fε(‖x‖) and
fε[d(x,C j )] are convex. Even more remarkable is the fact that both functions are
continuously differentiable. When x 6= 0, the function ‖x‖ is differentiable. Likewise,
when x 6∈ C j , the function d(x,C j ) is differentiable. Therefore, the chain rule implies

∇ fε(‖x‖) =
‖x‖√
‖x‖2 + ε

x
‖x‖
=

x√
‖x‖2 + ε

and (11)

∇ fε[d(x,C j )] =
d(x,C j )√

d(x,C j )2 + ε

x− PC j (x)

d(x,C j )
=

x− PC j (x)√
d(x,C j )2 + ε

, (12)

respectively.
By continuity, we expect the gradients to be defined for x = 0 and x ∈ C j by the

corresponding limit of 0. In the former case, the expansion

√
‖x‖2 + ε −

√
ε =
√
ε

√
1+
‖x‖2

ε
−
√
ε =

1

2

‖x‖2

√
ε
+
√
εo

(
‖x‖2

ε

)
shows that ∇ fε(‖0‖) = 0. In the latter case, the expansion√

d(y,C j )2 + ε −
√
ε =

1

2

d(y,C j )
2

√
ε
+
√
εo

[
d(y,C j )

2

ε

]
and the bound d(y,C j ) = |d(y,C j )− d(x,C j )| ≤ ‖y− x‖ for x ∈ C j likewise show
that ∇ fε[d(x,C j )] = 0. Consequently, equations (11) and (12) hold for all x ∈ Rd . It
follows that both Dε(x) and gε(x | y) are differentiable on Rd , with gradients

∇Dε(x) =
k∑

j=1

γ j

x− PC j (x)√
d(x,C j )2 + ε

and

∇gε(x | y) =
k∑

j=1

γ j

x− PC j (y)√
d(y,C j )2 + ε

, (13)

respectively. Note that y ∈ S minimizes Dε(x) over S if and only if

k∑
j=1

γ j

〈y− PC j (y), x− y〉√
d(y,C j )2 + ε

≥ 0,
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for all x ∈ S. This inequality, however, is equivalent to the inequality

〈∇gε(y | y), x− y〉 ≥ 0,

for all x ∈ S, which in turn holds if and only if y is a fixed point of ψ(x). If D(x)
is strictly convex, then Dε(x) has a unique minimum point, and ψ(x) has exactly one
fixed point.

Thus, Proposition 6.3 and Proposition 6.4 together tell us that y is a solution to (6)
if there is a sequence of εm tending to zero and a sequence of points ym tending to y
that satisfy 〈

−

k∑
j=1

γ j

ym − PC j (ym)√
d(ym,C j )2 + εm

, x− ym

〉
≤ 0, (14)

for all x ∈ S. The above sufficient condition becomes necessary as well if D(x) is
strictly convex. As a sanity check, when the sets S ∩ C j are all empty and the weights
γ j are identical, we recover the characterization of the optimal points given in Theorem
3.2 of [22], albeit under the more restrictive assumption of strict convexity.

7. CONCLUSION. There is admittedly an art to applying the MM principle. The
majorization presented here is specific to Euclidean distances, and changing the un-
derlying norm would require radical revision. Nonetheless, when the MM principle
applies, the corresponding MM algorithm can be effective, simple to code, and intu-
itively appealing. Here, the principle lit the way to an efficient numerical algorithm for
solving the Euclidean version of the generalized Heron problem, using only elemen-
tary principles of smooth convex analysis. We also suggested a simple, yet accurate
approximation of the problem that removes the singularities of the MM algorithm
and Weiszfeld’s earlier algorithm. Similar advantages accrue across a broad spectrum
of optimization problems. The ability of MM algorithms to handle high-dimensional
problems in imaging, genomics, statistics, and a host of other fields testifies to the po-
tency of a simple idea consistently invoked. Mathematical scientists are well advised
to be on the lookout for new applications.
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