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Abstract
The primary goal in cluster analysis is to discover natural groupings of objects. The field of

cluster analysis is crowded with diverse methods that make special assumptions about

data and address different scientific aims. Despite its shortcomings in accuracy, hierarchical

clustering is the dominant clustering method in bioinformatics. Biologists find the trees con-

structed by hierarchical clustering visually appealing and in tune with their evolutionary per-

spective. Hierarchical clustering operates on multiple scales simultaneously. This is

essential, for instance, in transcriptome data, where one may be interested in making quali-

tative inferences about how lower-order relationships like gene modules lead to higher-

order relationships like pathways or biological processes. The recently developed method

of convex clustering preserves the visual appeal of hierarchical clustering while ameliorat-

ing its propensity to make false inferences in the presence of outliers and noise. The solu-

tion paths generated by convex clustering reveal relationships between clusters that are

hidden by static methods such as k-means clustering. The current paper derives and tests a

novel proximal distance algorithm for minimizing the objective function of convex clustering.

The algorithm separates parameters, accommodates missing data, and supports prior infor-

mation on relationships. Our program CONVEXCLUSTER incorporating the algorithm is im-

plemented on ATI and nVidia graphics processing units (GPUs) for maximal speed. Several

biological examples illustrate the strengths of convex clustering and the ability of the proxi-

mal distance algorithm to handle high-dimensional problems. CONVEXCLUSTER can be

freely downloaded from the UCLA Human Genetics web site at http://www.genetics.ucla.

edu/software/

Author Summary

Pattern discovery is one of the most important goals of data-driven research. In the biolog-
ical sciences hierarchical clustering has achieved a position of pre-eminence due to its
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ability to capture multiple levels of data granularity. Hierarchical clustering’s visual dis-
plays of phylogenetic trees and gene-expression modules are indeed seductive. Despite its
merits, hierarchical clustering is greedy by nature and often produces spurious clusters,
particularly in the presence of substantial noise. This paper presents a relatively new alter-
native to hierarchical clustering known as convex clustering. Although convex clustering
is more computationally demanding, it enjoys several advantages over hierarchical cluster-
ing and other traditional methods of clustering. Convex clustering delivers a uniquely de-
fined clustering path that partially obviates the need for choosing an optimal number of
clusters. Along the path small clusters gradually coalesce to form larger clusters. Clustering
can be guided by external information through appropriately defined similarity weights.
Comparisons to hierarchical clustering demonstrate the superior robustness of convex
clustering to noise. Our genetics examples include inference of the demographic history of
52 populations across the world, a more detailed analysis of European demography, and a
re-analysis of a well-known breast cancer expression dataset. We also introduce a new al-
gorithm for solving the convex clustering problem. This algorithm belongs to a subclass of
MM (minimization-majorization) algorithms known as proximal distance algorithms.
The proximal distance convex clustering algorithm is inherently parallelizable and readily
maps to modern many-core devices such as graphics processing units (GPUs). Our freely
available software, CONVEXCLUSTER, exploits OpenCL routines that ensure compatibility
across a variety of hardware environments.

This is a PLOS Computational BiologyMethods paper.

Introduction
Pattern discovery is one of the primary goals of bioinformatics. Cluster analysis is a broad term
for a variety of exploratory methods that reveal patterns based on similarities between data
points. Well-known methods such as k-means invoke a fixed number of clusters. In complex
biological data, the number of clusters is unknown in advance, and it is appealing to vary the
number of clusters simultaneously with cluster assignment. Hierarchical clustering has been
particularly helpful in understanding cluster granularity in gene-expression studies and other
applications. In addition to producing easily visualized and interpretable results, hierarchical
clustering is simple to implement and computationally quick. These are legitimate advantages,
but they do not compensate for hierarchical clustering’s instability to small data perturbations
such as measurement error. Cluster inference can be adversely affected as small
errors accumulate.

All principled methods of clustering attempt to minimize some measure of within group
dissimilarity. Hierarchical clustering constructs a bifurcating tree by fusing or dividing obser-
vations (features). Fusion is referred to as agglomerative clustering and splitting as divisive
clustering. Because of the greedy nature of the choices in hierarchical clustering, it returns clus-
ters that are only locally optimal with respect to the underlying criterion [1]. Solution quality
may vary depending on how clusters are fused. There is no guarantee that UPGMA, single link-
age, or complete linkage will agree or will collectively or individually give the optimal clusters.
A potentially greater handicap is that small perturbations in the data can lead to large changes
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in hierarchical clustering assignments. This propensity makes hierarchical clustering sensitive
to outliers and promotes the formation of spurious clusters. In combination, the presence of
local minima and the sensitivity to outliers lead to irreproducible results.

Although hierarchical clustering has its drawbacks, completely reformulating it might be
detrimental. Recently [2] and [3] introduced convex clustering based on minimizing a penal-
ized sum of squares. Their criterion is coercive and strictly convex. Recall that a function f(x) is
coercive if limkxk ! 1 f(x) =1. According to a classical theorem of mathematical analysis, a
continuous coercive function achieves its minimum. Strict convexity of the convex clustering
criterion ensures that the global minimizer is unique. The penalty term in convex clustering
criterion accommodates prior information through nonuniform weights on data pairs. The so-
lution paths of convex clustering retain the straightforward interpretability of hierarchical clus-
tering while ameliorating its sensitivity to outliers and tendency to get trapped by
local minima.

Despite the persuasive advantages of convex clustering, there are two obstacles that stand in
its way of becoming a practical tool in bioinformatics. The first is the challenge of large-scale
problems. Current algorithms are computationally intensive and scale poorly on high-dimen-
sional problems. A second obstacle is the minimal guidance currently available on how to
choose penalty weights. Hocking and colleagues suggest some rules of thumb but offer little de-
tailed advice [3]. In our experience, the quality of the clustering path depends critically on well-
designed weights. To address these issues, the current paper describes a fast new algorithm and
a corresponding software implementation, CONVEXCLUSTER. Our advice on strategies for choos-
ing penalty weights is grounded in some practical biological examples. These examples support
our conviction that convex clustering can be more nuanced than hierarchical clustering. Our
examples include Fisher’s Iris data from discriminant analysis, ethnicity clustering based on
microsatellite genotypes from the Human Genome Diversity Project and SNP genotypes from
the POPRES project, and breast cancer subtype classification via microarrays. In the POPRES
data, we first reduce the genotypes to principal components and then use these to cluster. The
paths computed under convex clustering expose features of the data hidden to less sophisticat-
ed clustering methods. The potential for understanding human evolution and history alone
justify wider adoption of convex clustering.

Methods
Assume that there are n cases and p features. For example, cases might correspond to cancer
patients and features to their biomarker profiles. The more vivid language of graph theory
speaks of nodes rather than cases and edges rather than pairs of cases. To implement convex
clustering, [2] suggest minimizing the penalized loss function

fmðUÞ ¼ 1

2

Xn
i¼1

jjxi � uijj2 þ m
X
i<j

wijjjui � ujjj ð1Þ

relying on Euclidean norms. Here the column vector xi 2 R
p of the matrix X 2 R

p × n records
the features for case i, the column ui of the matrix U denotes the cluster center assigned to case
i, μ� 0 tunes the strength of the penalty, and wij � 0 weights the contribution of the case pair
(i, j) to the penalty. Unless sparse, the weights wij are stored in a symmetric n × n adjacency
matrix. Fig 1 illustrates the concept of convex clustering on three data point extracted from the
Iris dataset [4]. The objective function fμ(U) treats the features symmetrically. If these range
over widely varying scales, it is prudent to standardize each feature to have mean 0 and vari-
ance 1.

CONVEXCLUSTER
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Because the objective function fμ(U) is strictly convex and coercive, a unique minimum
point exists for each value of μ. When μ = 0 and the xi are unique, the choices ui = xi minimize
fμ(U), and there are as many clusters as cases. If the underlying graph is connected, then as μ in-
creases, cluster centers coalesce until all centers merge into a single cluster with all ui ¼ �x, the
average of the data points xi. Although splitting events as well as fusion events can in principle
occur along the solution path, following the path as μ increases typically reveals a hierarchical
structure among the clusters. The weights encode prior information that guides clustering. Set-
ting some of the weights equal to 0 reduces the computational load of minimizing fμ(U) in the
proximal distance algorithm introduced next.

The Proximal Distance Algorithm
The proximal distance principle is a new way of attacking constrained optimization problems
[5]. The principle is capable of enforcing parsimony in parameter estimation while avoiding
the shrinkage incurred by convex penalties such as the lasso. In parametric models, shrinkage
leads to biased parameter estimates and entices false positives to enter the model. Imperfect
models in turn fit new data poorly. The proximal distance principle seeks to minimize a func-
tion h(y), possibly nonsmooth, subject to y 2 C, where C is a closed set, not necessarily convex.
The set C encodes constraints such as sparsity. In the exact penalty method of Clarke [6, 7, 8],
this constrained problem is replaced by the unconstrained problem of minimizing h(y) + ρ dist
(y, C), where dist(y, C) denotes the Euclidean distance from y to C. Note that dist(y, C) = 0 is a
necessary and sufficient condition for y 2 C. If ρ is chosen large enough, say bigger than a
Lipschitz constant for h(y), then the minima of the two problems coincide (Proposition 6.3.2
in [6]).

How does convex clustering fit in this abstract framework? Although the objective function
fμ(U) is certainly nonsmooth, there are no constraints in sight. The strategy of parameter split-
ting introduces constraints to simplify the objective function. Since least squares problems are
routine, the penalty terms constitute the intractable part of the objective function fμ(U). One
can simplify the term kui−ujk by replacing the vector difference ui−uj by the single vector vij

Fig 1. Convex clustering concepts. For clarity, we present three random data points extracted from the three classes in the Iris dataset. Black points
denote the original data points X and blue points denote the cluster centersU. At μ = 0, X andU coincide. At intermediate μ values (middle figure),U
coalesces towards its cluster center. For sufficiently large μ, U converges to cluster centers (right figure). Note that in this demonstration, only the left two
points have non-zero pairwise weightswij. Hence, the two resulting clusters reflect the two graphs defined by the matrix of weights.

doi:10.1371/journal.pcbi.1004228.g001
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and imposing the constraint vij = ui−uj. Parameter splitting therefore leads to the revised objec-
tive function

gmðU;VÞ ¼ 1

2

Xn
i¼1

jjxi � uijj2 þ m
X
i<j

wijjjvijjj ð2Þ

with a simpler loss, an expanded set of parameters, and a linear constraint set C encapsulating
the pairwise constraints vij = ui−uj.

The proximal distance method undertakes minimization of h(y) + ρ dist(y, C) by a combi-
nation of approximation, the MM (majorization-minimization) principle [9, 10, 11, 12, 13],
and an appeal to a combination of set projection [14] and proximal mapping [15]. The latter
operations have been intensely studied for years and implemented in a host of special cases.
Thus, the proximal distance principle encourages highly modular solutions to difficult optimi-
zation problems. Furthermore, most proximal distance algorithms benefit from parallelization.

Let us consider each of the ingredients of the proximal distance algorithm in turn, starting
with approximation. The function dist(y, C) is nonsmooth even when C is well behaved. For �

> 0 small, the revised distance dist�ðy;CÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdistðy;CÞÞ2 þ �

q
is differentiable and approxi-

mates dist(y, C) well. The MM principle leads to algorithms that systematically decrease the ob-
jective function. In the case of minimizing f(y) + ρ dist(y, C) one can invoke the majorization
dist(y, C)� ky−PC(ym)k, where PC(ym) is the projection of the current iterate ym onto the set
C. By definition dist(ym, C) = kym−PC(ym)k, and PC(ym) is a closest point in C to the point ym.
For a closed nonconvex set, there may be multiple closest points; for a closed convex set there
is exactly one.

According to the MM principle, minimizing the surrogate function

1

2

Xn
i¼1

jjxi � uijj2 þ m
X
i<j

wijjjvijjj þ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U

V

 !
� PC

Um

Vm

 !�����
�����

�����
�����
2

þ �

vuuut ð3Þ

drives the approximate objective function

1

2

Xn
i¼1

jjxi � uijj2 þ m
X
i<j

wijjjvijjj þ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dist

U

V

 !
;C

" #2

þ �

vuut

downhill. The surrogate function Eq (3) is still too complicated for our purposes. The remedy
is another round of majorization. This time the majorization

ffiffiffiffiffiffiffiffiffiffi
t þ �

p � ffiffiffiffiffiffiffiffiffiffiffiffi
tm þ �

p þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
tm þ �

p ðt � tmÞ ð4Þ

comes into play based on the concavity of the function
ffiffiffiffiffiffiffiffiffiffi
t þ �

p
for t� 0. This follows from the

fact that a differentiable concave function is always bounded by its first order Taylor expansion.
As required by the MM principle, equality holds in the majorization Eq (4) when t = tm.

CONVEXCLUSTER

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004228 May 12, 2015 5 / 31



Applying this majorization to the surrogate function Eq (3) yields the new surrogate

h½ðU;VÞjðUm;VmÞ� ¼ 1

2

Xn
i¼1

jjxi � uijj2 þ m
X
i<j

wijjjvijjj þ
r
2dm

U

V

 !
� PC

Um

Vm

 !�����
�����

�����
�����
2

dm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Um

Vm

 !
� PC

Um

Vm

 !�����
�����

�����
�����
2

þ �

vuut
ð5Þ

up to an irrelevant constant. The surrogate function Eq (5) resulting from these maneuvers
separates all of the vectors ui and vij. The derivative of the surrogate with respect to ui is

@

@ui
h½ðU;VÞjðUm;VmÞ� ¼ ui � xi þ

r
dm

ðui � an;iÞ;

where an,i is the part of the projection pertaining to ui. One can explicitly solve for the update

unþ1;i ¼ dm
dm þ r

xi þ
r

dm þ r
an;i:

The update of vij involves shrinkage. Let bn,ij denote the part of the projection pertaining to vij.

Standard arguments from convex calculus [16] show that the minimum of mwijkvijk þ
r

2dm
kvij � bn;ijk2 is achieved by

vnþ1;ij ¼ max 1� mwijdm

r k bn;ij k

 !
; 0

( )
bn;ij: ð6Þ

In the exceptional case bn,ij = 0, the solution vn+1,ij = 0 is clear from inspection of the vij criteri-
on Eq (6). Both of these solution maps fall under the heading of proximal operators, hence, the
name proximal distance algorithm.

If a weight wij = 0, then it is computationally inefficient to introduce a difference vector vij.
Thus, in many applications, the weight matrixW = (wij) may be sparse. The block descent algo-
rithm for projection, that we discuss next, takes into account the sparsity patterns inW. Again
taking the sparsity pattern ofW into account enables us to employ fewer difference vectors. Let
E denote the set of edges {i, j} with positive weights wij = wji. Divide the neighborhood Ni of a
node i into left and right node neighborhoods Li = {j< i:wji > 0} and Ri = {j> i:wij > 0}. Clear-
ly Ni = Li[Ri, and E ¼ [n

i¼1Ni. Projection minimizes the criterion

1

2

Xn
i¼1

k ui � ~u i k2 þ
1

2

X
fi;jg2E

k ui � uj � ~v ij k2

for ~U and ~V given. One can minimize this criterion by equating its derivative with respect to ui
to 0. It is unclear how to massage the stationarity equation

0 ¼ ui � ~u i þ
X
j2Ri

ðui � uj � ~v ijÞ �
X
j2Li

ðuj � ui � ~v jiÞ

into a solvable form. However, the block updates

ui ¼ 1

1þ jNij
~u i þ

X
j2Ri

~v ij �
X
j2Li

~v ji þ
X
j2Ni

uj

 !

are available. Here jNij denotes the cardinality of Ni. One cycle of the block descent algorithm

CONVEXCLUSTER
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updates u1 through un sequentially. This cycle is repeated until all of the vectors ui stabilize.
Once convergence is achieved, one sets vij = ui−uj for the relevant pairs.

Missing Data
In general, clustering methods require complete data. The remedy of pre-imputation of missing
values can be sensitive to the model assumptions underlying a given imputation method. A bet-
ter remedy is to change the clustering criterion to directly reflect missing data. It is then
straightforward to accommodate missing data in X by another round of majorization. Suppose
Γ is the set of ordered index pairs (i, j) corresponding to the observed entries xij of X. We now
minimize the revised criterion

fmðUÞ ¼ 1

2

X
ði;jÞ2G

ðxij � uijÞ2 þ m
X
i<j

wijjjui � ujjj; ð7Þ

which unfortunately lacks the symmetry of the original problem. To restore the lost symmetry,
we invoke the majorization

1

2

X
ði;jÞ2G

ðxij � uijÞ2 � 1

2

X
ði;jÞ2G

ðxij � uijÞ2 þ
1

2

X
ði;jÞ=2G

ðumij � uijÞ2;

where umij is a component of Um. In essence, the term (umij−uij)
2 majorizes 0. If the n × pma-

trix Y = (yij) has entries yij = xij for (i, j) 2 Γ and yij = umij for (i, j) =2 Γ, then in the minimization
step of the proximal distance algorithm, we simply minimize the surrogate function

gmðU;VÞ ¼ 1

2

Xn
i¼1

jjyi � uijj2 þ m
X
i<j

wijjjvijjj ð8Þ

The rest of the proximal distance algorithm remains the same.

Calibration of Weights
The pairwise weight wij = wji introduced in the penalty term of Eq (1) determines the impor-
tance of similarity between nodes i and j. Two principles guide our choice of weights. First, the
weight wij should be inversely proportional to the distance between the ith and jth points. This
inverse relationship accords with intuition. As wij increases, the pressure for the ith and jth cen-
troids to coalesce increases. If the weights wij are correlated with the similarity of the feature
vectors xi and xj, then the pressure for their centroids to merge is especially great. Second, the
weight matrixW should be sparse. Despite the fact that small positive weights and zero weights
lead to similar clustering paths, the computational advantages of zero weights cannot
be ignored.

These observations prompt the following choice of weights. To maintain computational effi-
ciency, it is helpful to focus on the k nearest neighbors of each node. We define the distance dij
between two nodes i and j by the Euclidean norm jjxi−xjjj and write i*k j if j occurs among the
k nearest neighbors of i or i occurs among the k nearest neighbors of j. Based on these consider-
ations the weights

wij ¼ 1fi�kjge
��d2ij ð9Þ

are reasonable, where 1{i*k j} is the indicator function of the event {i*k j} and ϕ� 0 is a tuning
constant. The case ϕ = 0 corresponds to uniform weights between nearest neighbors. When ϕ
is positive, wij strictly decreases as a function of dij. Complete coalescence of the nodes occurs

CONVEXCLUSTER
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as μ increases if the graph is connected based on all wij. Using squared distances d2
ij rather than

distances dij induces more aggressive coalescence of nearby points and slower coalescence of
distant points. In practice we normalize weights so that they sum to 1. This harmless tactic is
equivalent to rescaling μ. This generic framework was proposed by [3].

We now discuss a strategy for leveraging additional information. When expert knowledge
on the relationships among nodes is available and can be quantified, incorporating such knowl-
edge may improve the clustering path. This must be done delicately so that prior information
does not overwhelm observed data. If xi and yi store the genotypes and GPS (global positioning
system) coordinates of subject i, respectively, then the weighted average

dij ¼ a k xi � xj k þð1� aÞ k yi � yj k; a 2 ð0; 1Þ; ð10Þ

serves as a composite distance helpful in clustering subjects. In Eq (10) observe that the compo-
nents of the difference yi−yj must be computed in modulo arithmetic. Given a proper choice of
the scaling constant α, an even better alternative replaces kyi−yjk by the geodesic distance be-
tween i and j. One could reverse the roles of the vector pairs yi and xi, but it seems to us that ge-
notype similarity rather than physical proximity should be the primary driver of clustering.
GPS coordinates are less informative, crudely estimated, and shared across many cases.

Evaluation of Clusters
Our program CONVEXCLUSTER minimizes the penalized loss Eq (2) for a range of user specified μ
values. For each μ the optimized matrix U of cluster centers is stored in a temporary file for
later construction of the cluster path. To facilitate visualization, CONVEXCLUSTER encourages
users to project the cluster path onto any two principal components of the original data. The
first example of Section 1 relies on the classical Iris data of discriminant analysis [4]. This data-
set contains 150 cases spread over three species. The Iris data can be downloaded from the UCI
machine learning repository [17]. For purposes of comparison, we also evaluated the clusters
formed by agglomerative hierarchical clustering. In contrast to convex clustering, hierarchical
clustering results are usually visualized via dendrograms. Hierarchical clustering comes in sev-
eral flavors; we chose UPGMA (Unweighted Pair Group Method with Arithmetic Mean) [18]
as implemented in the R function hclust. Although hclust offers six other options for merging
clusters, UPGMA is probably the most reliable in reducing the detrimental effects of outliers
since it averages information across all cluster members. UPGMA operates on a matrix of pair-
wise distances defined between nodes. In our genetics examples, we take these to be the dis-
tances defined by Eq (10). To make a fair comparison between convex and hierarchical
clustering, we invoke the composite distance in both methods. We also present results graphi-
cally by projecting cluster paths onto the first two principal components of the genetic data in
Examples 1 and 2 and the expression data in the last Example. To generate a cluster path for hi-
erarchical clustering, we assigned each fusion node on the tree as as the average of the values of
its descendant leaves.

Results

Guidance on Selecting Constants k and ϕ

In computing pairwise weights, one is immediately confronted with the question of how to se-
lect the constants k (number of nearest neighbors) and ϕ (the soft-threshold effect). The answer
depends upon one’s research goals. Unlike supervised learning such as classification, clustering
is inherently exploratory. In practice it usually looks for coarse-level relationships among the
data points before drilling down in coarse clusters to look for fine-level relationships. In

CONVEXCLUSTER
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Fig 2. Effects of the parameters k and ϕ on cluster paths in the Iris data. Black, red, and green points denote the species Iris-setosa, Iris-versicolor, and
Iris-virginica, respectively. These points are projections of the Iris dataset on the first two principal components (PCs). Lines trace the cluster centers as they
traverse the regularization path. The subtle impact of ϕ is revealed in two cases. At k = 50, a red dot coalesces with the right cluster at ϕ = 0, but with the left
cluster for larger values of ϕ. At k = 5 or k = 10, the two green dots at the extreme lower left corner coalesce later at the largest value of ϕ.

doi:10.1371/journal.pcbi.1004228.g002

CONVEXCLUSTER
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hierarchical clustering different levels of granularity can be explored by drawing a line bisecting
all branches along a given level of the tree. Our recommendation for convex clustering is to
begin with large values of k and then examine the patterns revealed as k is progressively re-
duced. All points eventually coalesce to a single cluster while k exceeds a particular threshold,
which is determined by the separation of the nodes.

To get a sense of the impact of the constants k and ϕ on the Iris data, we generated cluster
paths for various pairs (k, ϕ). As Fig 2 illustrates, k quantifies the connectivity of the underlying
graph. Eventual coalescence only occurs for k = 50; even then the apparent Iris-Versicolor out-
lier does not coalesce until very late. All values of k support a clear separation of Iris-Setosa
from the other two species Iris-Versicolor and Iris-Virginica. Separation of Iris-Versicolor and
Iris-Virginica into two different groups becomes discernible at k = 20. Subgroups within each
species are evident for k = 5 and k = 2. Improved resolution comes at a price; the two small
two-member clusters seen in the top right corner of the main Iris-Versicolor cluster never fully
coalesce with the main cluster when k = 2. The distance tuning constant ϕ also exerts a subtle
influence along each row of Fig 2. This influence is more strongly felt for low values of k. For
example, for k = 2 and k = 5 with ϕ = 4, we observe that the two green points at the bottom left
of the cluster graph coalesce much later when ϕ is set to smaller values. Examination of the Iris
data suggests exploring cluster granularity over a range of k values with ϕ set to 0. One can find
the minimum k ensuring full connectivity by combining bisection� with either breadth-first
search or depth-first search [19]. Once the desired granularity is achieved, ϕ can be increased
to reveal more subtle details. Note that increasing ϕ sends most weights between k nearest
neighbors to 0. As previously noted, the proximal distance algorithm takes substantially more
iterations to converge for large values of ϕ.

As the Iris data illustrate, cluster inference is robust over a wide range of k values. Across all
four rows in Fig 2, we would have learned that there are two major classes of Iris, even if the
points were plotted in the same color. By decreasing k, we were able to discern relationships
within the two classes. The figure also shows that the parameter ϕ is less critical than k. Note,
however, that for low values of k, better resolution is achieved by increasing ϕ from 0.

Cluster Accuracy in the Presence of Noise
Although agglomerative hierarchical clustering is computationally efficient, it is greedy, and
greedy algorithms tend to produce suboptimal solutions [1]. In particular, it can falter in the
face of noisy data. To test this hypothesis, we simulated new data from the Iris data. In creating
a dataset, we perturbed each row of the data matrix X by adding normal deviates with mean 0

Table 1. Avg Rand indices (RI) as a function of noise in the Iris data.

Noise level c HCLUST CONVEXCLUSTER

UPGMA RI k = 5 RI k = 10 RI k = 15 RI

0.02 .83(.05) .88(.03) .89(.01) .89(.02)

0.04 .83(.05) .88(.03) .88(.02) .88(.03)

0.06 .83(.05) .88(.03) .88(.03) .88(.03)

0.08 .82(.05) .88(.04) .88(.03) .87(.03)

0.10 .82(.05) .87(.04) .87(.04) .86(.04)

Standard deviations in parentheses. For computational efficiency, ϕ was set to zero for convex clustering.

doi:10.1371/journal.pcbi.1004228.t001
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and standard deviation equal to the sample standard deviation s2 of the corresponding feature
multiplied by a constant c. We then clustered the data points into three clusters and quantita-
tively evaluated clustering performance through Normalized Rand Indices [20]. For convex
clustering, visual inspection of the converged clustering paths reveals roughly three major clus-
ters for values of k between 5 and 15. With hierarchical clustering, three clusters were con-
structed by choosing a cut point on the full tree intersecting three branches. Table 1
summarizes Rand indices averaged over 100 replicates under the two methods. Larger values of
the Rand index represent higher accuracy; the maximum value of 1 indicates error-free cluster-
ing. Examination of the table suggests that convex clustering is indeed more accurate in the
face of noise over a wide range of k values.

Cluster Accuracy with Missing Values
We carried out a second simulation study on the Iris data to assess accuracy of cluster inference
as a function of missingness. Because the Iris data includes only four features (width and height
of sepals and petals), simply selecting entries of the data matrix at random can lead to cases re-
taining no data. To avoid these degeneracies, we randomly selected cases and then a random
feature from each case for deletion. Given cases rates of 25%, 50%, 75%, and 100%, the propor-
tion of missing observations consequently ranged from 5% to 25%. Hierarchical clustering
with missing data requires that either cases with missing entries be omitted or that missing en-
tries be imputed. We employed the second strategy, filling in missing entries by multiple impu-
tation as implemented in the R package MI [21]. Hierarchical clustering was then applied to the
completed data. For convex clustering, we also applied multiple imputation, but for the sole
purpose of computing the convex clustering weights. We then applied convex clustering to the
original incomplete data under the objective function Eq (7). Accuracy for each method was es-
timated in the same manner as the previous simulations. The Rand indices in Table 2 suggest
that convex clustering does indeed outperform hierarchical clustering in the presence of
missing data.

Inference of Ethnicity
As genotyping costs have dropped in recent years, it has become straightforward to relate eth-
nicity to subtle genetic variations. Several software tools are now available for this purpose. For
example, the programs STRUCTURE [22] and ADMIXTURE [23] estimate a subject’s admixture pro-
portions across a set of predefined or inferred ancestral populations. EIGENSTRAT [24] employs a
handful of principal components to explain ethnic variation. Principal component analysis
(PCA) is attractive due to its speed and ease of visualization. Clustering can also separate sub-
jects by ethnicity if individuals of mixed ethnicity are omitted. The advantage of convex

Table 2. Avg Rand indices (RI) as a function of missingness in the Iris data.

Proportion of rows with a missing attribute c HCLUST CONVEXCLUSTER

UPGMA RI k = 5 RI k = 10 RI k = 15 RI

0.25 .82(.05) .88(.03) .88(.03) .87(.02)

0.50 .83(.05) .87(.04) .86(.03) .86(.03)

0.75 .82(.05) .86(.05) .85(.04) .86(.04)

1.00 .82(.04) .86(.05) .84(.05) .85(.04)

Standard deviations in parentheses. For computational efficiency, ϕ was set to zero for convex clustering.

doi:10.1371/journal.pcbi.1004228.t002
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clustering is that one can follow the dynamic behavior of the relationship clusters along the reg-
ularization path. In the next two examples on population structure, the data consist of multi-
dimensional genotypes. We project our convex clustering paths onto the first two principal
components of the data. This produces plots where population substructure aligns with geo-
graphic regions of origin.

World-wide genetic diversity. For a practical demonstration of convex clustering, we now
turn to the Human Genome Diversity Project (HGDP). This collaboration makes several data-
sets publicly available that vary in marker type (SNPs versus microsatellites) and sample size.
The HGDP 2002 dataset considered here includes 1,056 individuals from 52 populations geno-
typed at 377 autosomal microsatellites [25]. Care must be taken in analyzing microsatellites
since, in contrast to SNPs, they display more alleles and greater levels of polymorphism. Recall
that an allele at a microsatellite approximates the number of short tandem repeats of some sim-
ple motif. Because treating microsatellite genotypes as continuous variables is problematic, we
encode each microsatellite genotype as a sequence of allele counts. Each count ranges from 0 to
2, and there are as many count variables as alleles. This encoding yields a revised 2002 dataset
with the 377 microsatellite genotypes expanded to 4,682 different attributes.

Fig 3. Convex clustering of the HGDP data using a large number of nearest neighbors to infer intercontinental connections (k = 4, ϕ = 1).

doi:10.1371/journal.pcbi.1004228.g003
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As expected, these data exhibit clines in allele frequencies [26]. To take advantage of the cor-
relation between geographic separation and ethnic similarity, we defined penalty weights wij

according to the composite distance in Eq (10) with constant α = 0.5. We chose this value of α
to give equal weight to both sources of information. Results for other values of α 2 (0, 1) are
similar. We progressively reduced k from a large value such as 10 until we could observe sepa-
ration of the seven major continental groups. Variations in ϕmake no discernible differences
in the analysis of these data. Fig 3 plots cluster paths for these data given the settings ϕ = 1 and
k = 4. With k = 4 nearest neighbors, we observe broad-scale clustering events that link up the
major continental groups. In the north, Europeans fall into a single cluster, later joined by pop-
ulations from the Middle East. In the east the Chinese merge into a cluster that subsequently
merges with two Oceania populations from New Guinea. This mega cluster then merges with
various Central Asian populations of predominantly Pakistani origin. In the west five Central/
South American populations cluster, and in the south six African populations cluster. Consid-
ering the continental clusters in the figure, the American cluster (red points) and the Central/
East Asian cluster (green points) are linked by a straight line, while the northern (turquoise,
green, and magenta points) and southern continental clusters (black points) appear to fuse at a

Fig 4. Hierarchical clustering of the 52 populations from the HGDP data.

doi:10.1371/journal.pcbi.1004228.g004
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point just below this straight line. This accords with known links between East Asians and
American Indians, who crossed the Bering strait, possibly multiple times, during the Ice Age
[27]. Fig 4 presents the output of hierarchical clustering, where datapoints and their fused (av-
eraged) values are projected onto the same coordinates as the convex clustering results. Al-
though the two methods give fairly consistent plots, there is a striking difference in how the
African San population is treated. In hierarchical clustering it coalesces to the origin as a single
outlier continental region. The Central Asian groups also appear to be more closely related to
Europeans. In convex clustering Fig 5 depicts finer grained events exposed by setting k = 1.
Along the western axis, taking k = 1 is uninformative, but among the African populations
along the southern axis, we observe three major clusters: a two-member cluster representing
the two Pygmy sub-groups; a three-member cluster comprising Bantu-speaking peoples from
Kenya, Yorubans from Nigeria, and Mandenkas from Senegal; and finally a singleton cluster
for the San from Namibia. These results are consistent with a recent phylogenetic study [28]
that found the San to be the most isolated of the African populations, followed by the two
Pygmy populations, and finally the three Bantu-language populations. Along the eastern axis,

Fig 5. Convex clustering of the HGDP data using a small number k of nearest neighbors to resolve intracontinental connections (k = 1, ϕ = 1).

doi:10.1371/journal.pcbi.1004228.g005
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the two Papua New Guinea populations cluster together and do not join the remaining
Asian populations.

Figs 6 and 7 focus on related populations along the eastern and northern axes of East Asia,
respectively. Most of the Chinese populations along the eastern axis appear to coalesce simulta-
neously. Some of the other populations along the northern border of China coalesce earlier.
The Hezhen and Oroqen peoples reside predominantly in the Heilongjiang province of north-
east China [29, 30]. These two populations cluster early with the inner Mongolians and the
Xibo population, who occupy northeast China and the northwest region of Xinjiang province.
Three distinct clusters of Middle Easterners, Central Asians, and Europeans occur along the
northern axis. All European populations except for the Russian populations are grouped into a
single cluster. The two Russian populations instead merge with a second cluster that includes
three populations from Israel. The Mozabites, who coalesce late with this cluster, exhibit high
frequencies of North African haplotypes as previously noted in the literature [31, 32]. A third
cluster within Central Asia unite Pakistani populations with Uygurs from China. Within this
cluster, the Brahui, Balochi, and Makran populations of the Baluchistan province of northwest-
ern Pakistan coalesce early with the Sindhi people of the Sindh province on the eastern border
of Baluchistan. Later coalescing populations include the Hazara, Uygurs, and Kalash. The
Hazaras of Pakistan and the Uygurs of China share common Mongolian and Turkic ancestry
and some physical attributes [33, 34]. In contrast, hierarchical clustering suggests a more

Fig 6. Magnified view of the convex clustering results for the HGDP data in East Asia.

doi:10.1371/journal.pcbi.1004228.g006
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distant relationship between these two ethnic groups. (Fig 8) A previous admixture analysis
carried out on high-density SNP data via STRUCTURE [22] supports our observation that the
Kalash people constitute a single distinct cluster, one of seven clusters separating all of the pop-
ulations covered in the HGDP data [31].

Population structure of Europe. We next investigate whether convex clustering can glean
further insights into the population structure of Europe. The POPRES resource archives high-
density genotypes generated on the Illumina 550k microarray platform [35]. Version 2 of
POPRES contains genotype and phenotype data on 4,077 subjects genotyped across 457,297
SNPs. For this analysis, we include only non-admixed Europeans who report all four grandpar-
ents of the same ethnicity. This leaves 1,896 subjects. SNP data presents advantages and disad-
vantages compared to microsatellite data. Dense marker panels may be more sensitive to subtle
differences driven by population events such as migration, expansion, and bottlenecks [36].

Fig 7. Magnified view of the convex clustering results for the HGDP data in Europe and Central Asia.

doi:10.1371/journal.pcbi.1004228.g007
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Challenges include the lower information content of biallelic markers and the correlations be-
tween markers caused by linkage disequilibrium (LD). After considerable experimentation, we
found that the leading principal components offered more insight into population structure
than the raw genotypes themselves. We employed EIGENSTRAT to extract the ten leading princi-
pal components from the genotype matrix. EIGENSTRAT prunes SNPs in LD with r2 exceeding a
user-specified threshold [24]. In our case the threshold 0.8 discards all but 276,823 nearly inde-
pendent SNPs. Our choice of the composite distance defined in Eq (10) places equal weight (α
= 0.5) on genetic distances and GPS distances between the capital cities of participants. To ease
visualization, our figures display a maximum of 20 subjects from each ethnicity, for a total of
370 subjects. The computed convex clustering path is projected onto the first two principal
components of the POPRES data; these components capture geographic east-west and north-
south axes, respectively.

Fig 8. Magnified view of the hierarchical clustering results for the HGDP data in Europe and Central Asia.

doi:10.1371/journal.pcbi.1004228.g008
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In the Iris and the HGDP datasets, the number of nearest neighbors k was more critical in
resolving cluster evolution than the tuning constant ϕ. In the European POPRES data, where
inter-class differences are more subtle, increasing ϕ can be critical in resolving details for k
large. As in the previous examples, we gradually reduced k from a large value until major clus-
ters along the North-West, North-East, and South-East geographic axes emerged. Fig 9 depicts
a clustering path with k = 40 neighbors and ϕ = 0. Increasing ϕ to 10 gives a similar clustering
pattern, except that each of the major trunks coalesce before converging to the origin. Thus,
Fig 10 shows several major clusters connected by five major trunks. Spain and Portugal consti-
tute a major cluster in the southwest trunk. The southeast trunk includes Italy and southeast
Europe; these populations eventually merge into a single cluster. The northeast trunk defines a
cluster that includes Poland, Russia, Ukraine, the Czech Republic, Hungary, and Slovenia. Nor-
way, Sweden, and Germany cluster along the northern trunk, and the British Isles merge with
Belgium and the Netherlands to form the northwest trunk. A large cluster comprising France
and the Swiss linguistic groups (French, German, and Italian) constitute the western trunk.

Fig 9. Convex clustering of the European populations from the POPRES data using ϕ = 0 and k = 40.

doi:10.1371/journal.pcbi.1004228.g009

CONVEXCLUSTER

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004228 May 12, 2015 18 / 31



Hierarchical clustering for the most part recapitulates these major clusters, but the major clus-
ters are less discernible. (Fig 11) Replotting the clustering path from convex clustering with ϕ =
1 and k = 3 shows Norway and Sweden breaking away from Germany and forming their own
disjoint cluster (Fig 12). France breaks away from the Swiss groups to form its own disjoint
cluster. Along the south trunk, Italy now separates from southeast Europe and eventually clus-
ters with the Swiss-Italians.

Fig 13 depicts the clustering path of southeast Europe, where West Slavic languages pre-
dominate. Here Greece first coalesces with Macedonia, a Slavic population bordering Greece
on the north. A cluster comprising Bosnia-Herzegovina and Serbia merges with Romania, be-
fore merging into the primary trunk of southeast Europe. Finally at the northern end of the
trunk, a cluster formed by Croatia and Slovenia form its own cluster. The groups in the Bosnia-
Herzegovina cluster and the Macedonian cluster are consistent with the recent break up of Yu-
goslavia. Poland and Russia cluster in the northern most branch of the northeast trunk (Fig
14). The Czech-Republic, Austria, and Hungary define a distinct cluster along the southern

Fig 10. Convex clustering of the European populations from the POPRES data using ϕ = 10 and k = 40.

doi:10.1371/journal.pcbi.1004228.g010
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branch. Given that Austria conquered Hungary in 1699 and established rule over Bohemia (the
predecessor to modern Czechs) as early as 1526, these results are not surprising.

In the POPRES data, convex clustering and hierarchical clustering occasionally disagree.
For example, hierarchical clustering merges the Netherlands and Belgium with Britain before it
merges Britain with Ireland and Scotland (Fig 15). In light of the geography and history of Brit-
ain, it is reasonable to expect Britain to first merge with Scotland and Ireland. Convex cluster-
ing produces yields precisely this expected effect (Fig 16). The British-Scotland-Ireland cluster
then merges with the neighboring cluster of Belgium and the Netherlands. Owing to a few out-
liers, the greedy nature of hierarchical clustering appears to force a spurious coalescence, which
cannot be repaired until later. Another discrepancy occurs in clustering the Swiss linguistic
groups. Convex clustering first groups the Swiss-German, Swiss-French, and Swiss-Italian into
a single Swiss cluster (Fig 17). Hierarchical clustering groups France with this cluster. At the
next higher level, rather than cluster Italy with the Swiss, hierarchical clustering merges it with

Fig 11. Hierarchical clustering of the European populations from the POPRES data.

doi:10.1371/journal.pcbi.1004228.g011
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Greece and populations from the former Yugoslavia. Convex clustering, in contrast, merges
Italy with the Swiss before joining both to the southeast European trunk. In this case, it is un-
clear which method is providing a more accurate solution; due to the large size of Italy, geo-
graphic proximity suggests a closer relationship between Southern Italians and Greece, with
similar logic applied to Northern Italians and the Swiss. Further details on the geographic ori-
gins of POPRES Italian subjects would help resolve this discrepancy.

Inferring Cancer Subtypes
It is well accepted that cancers of a given tissue often fall into different subtypes. In breast can-
cer for instance, patients with tumors that are estrogen receptor (ER) and epidermal growth
factor receptor (ErbB2) negative are less responsive to hormone based treatment than those
possessing active receptors [37]. High-throughput platforms such as gene-expression microar-
rays and RNA-Seq have enabled researchers to classify cancer patients based on their molecular
phenotypes. Hierarchical clustering by [38] established five gene-expression profiles across

Fig 12. Convex clustering of the European populations from the POPRES data using ϕ = 1 and k = 3.

doi:10.1371/journal.pcbi.1004228.g012
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9216 genes in 84 breast-cancer patients. Among the 84 patients, only 16 also had a clinical as-
sessment of hormone receptor status. Here, we attempt to determine whether convex and hier-
archical clustering can infer clusters consistent with the clinical outcomes for these 16 patients.
Under the tuning constants ϕ = .5 and k = 1, convex clustering recovers two distinct clusters.
Fig 18 projects the cluster centers along the cluster path on the first and third principal compo-
nents of the original data. The left and right clusters correspond roughly to ER positive and ER
negative tumors, respectively. Two ER negative tumors cluster with the ER positive tumors. Fig
19 depicts results from hierarchical clustering. Based on the order of fusion events, hierarchical
clustering does not appear to group the tumors into distinct ER positive and negative groups.
This could be an artifact of the hard binary choices imposed by hierarchical clustering. The two
ER-B2 positive samples that clustered together in convex clustering appear in distant clusters
under hierarchical clustering.

Fig 13. Magnified view of results from convex clustering of Southeast Europe.

doi:10.1371/journal.pcbi.1004228.g013
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Run-Time Benchmarks
For a dataset with a large number of attributes, parallelization can substantially reduce run
times. CONVEXCLUSTER includes code written in OpenCL, a language designed to run on many-
core devices such as GPUs. For each of the three genetic analyses presented above, we recorded
the total run-time along the entire regularization path using standard C++ code for the CPU
and OpenCL code for the GPU. For the sake of comparison, we also recorded run-times for
CLUSTERPATH [3], an R package that also implements convex clustering, on the same datasets
and weighting schemes. Table 3 records the average run time to minimize the objective func-
tion averaged over all values of the regularization parameter. We chose this strategy because
CLUSTERPATH does not allow users to pre-specify a grid of regularization values. The bottom line
is that CONVEXCLUSTER required only 16%, 47%, and 75% of the time required by CLUSTERPATH to
fit the HGDP, POPRES, and breast cancer datasets respectively. When a GPU is available, fur-
ther improvements can potentially be realized. On an nVidia C2050 GPU, CONVEXCLUSTER

Fig 14. Magnified view of results from convex clustering of Northeast Europe.

doi:10.1371/journal.pcbi.1004228.g014
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enjoys speed improvements of 4.6 and 5.5 fold over the CPU version for the HGDP and breast
cancer examples. In contrast, on the POPRES example, the GPU version is actually 3.5 fold
slower than the CPU version. In its current form, CONVEXCLUSTER reads the updated matrix U
from the GPUs at each point on the μ-regularization path before saving the data to disk. This
large I/O overhead can overwhelm gains from parallelization for low-dimensional datasets
such as the POPRES data. In general, GPU implementations of standard algorithms require a
high degree of parallelization, limited data transfers between the master CPU and the slave
GPUs, and maximal synchrony of the GPUs. Depending on the nature of the clustering data,
CONVEXCLUSTER satisfies these requirements. It does not in the POPRES data, and computational
efficiency suffers in the GPU version.

Fig 15. Hierarchical clustering projection showing genetic relationships among populations in and near the British Isles.

doi:10.1371/journal.pcbi.1004228.g015
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Discussion
The literature on cluster analysis is enormous. Each clustering method has advantages in either
simplicity, speed, reliability, interpretability, or scalability. If the number of clusters is known
in advance, then k-means clustering is usually preferred. In convex clustering one can often
achieve a predetermined number of clusters by varying the number of nearest neighbors and
following the solution path to its final destination. Alternatively, if the underlying graph is fully
connected, then one can follow the solution path until k clusters appear. The downside of k-
means clustering is that it offers no insight into cluster similarity. If the goal in clustering is to
obtain a snapshot of the relationships among observed data points at different levels of granu-
larity, the choices are limited, and most biologists opt for hierarchical clustering. Hierarchical
clustering is notable for its speed and visual appeal. Balanced against these assets is its sensitivi-
ty to poor starting values and outliers. Convex clustering occupies an enviable middle ground

Fig 16. Convex clustering projection showing genetic relationships among populations in and near the British Isles.

doi:10.1371/journal.pcbi.1004228.g016
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between k-means clustering and hierarchical clustering. Our extensive exploration of the
HGDP and POPRES datasets showcase the subtle solutions paths of convex clustering. These
paths offer considerable insights into population history and correct some of the greedy mis-
takes of hierarchical clustering.

Nonetheless, hierarchical clustering can be the more practical choice when noise is low and
a premium is put on computational speed. In the Iris data with no introduced noise, the two
methods yield equivalent results. Total runtimes for the convex clustering analyses in this
paper ranged from 5 minutes to 30 minutes. In contrast, even for the largest datasets analyzed
here, hierarchical clustering required no more than 5 seconds to complete. Our perturbations
of the Iris data demonstrate sensitivity to noise, so speed comes at a price.

Given the novelty of convex clustering [2], it is hardly surprising that only a few previous
programs (CLUSTERPATH [3] and CVXCLUSTR [39]), implement it. Our program is unique in that
we offer a fast implementation when GPU devices are available. These earlier programs

Fig 17. Magnified view of results from convex clustering of Swiss liguistic groups.

doi:10.1371/journal.pcbi.1004228.g017
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perform similarly to our program on modest problems such as the Iris data. Unfortunately, on
large datasets such as the HGDP data, CLUSTERPATH depletes all available memory and termi-
nates prematurely. Furthermore, CLUSTERPATH lacks two features that work to the advantage of
convex clustering. First, it does not support disconnected graphs defined by sparse weights. In
our breast cancer example, clustering with disconnected graphs reveals fine-grained details.
Second, CLUSTERPATH does not allow for missing entries in the data matrix. The current paper
documents CONVEXCLUSTER’s ability to scale realistically to dimensions typical of modern geno-
mic data. A combination of careful algorithmic development and exploitation of modern
many-core chipsets lies behind CONVEXCLUSTER. The proximal distance algorithm propelling
CONVEXCLUSTER separates parameters and enables massive parallelization. OpenCL made it rela-
tively easy to implement parallel versions of our original serial code. Further speedups are pos-
sible. For instance, CONVEXCLUSTER spends an inordinate amount of execution time moving
matrices over relatively slow I/O channels in preparation for plotting. One could easily project

Fig 18. Convex clustering of the breast cancer samples. Points on the plot indicate data vectors projected onto the first and third principal components
(PCs) of the sample. Lines trace the cluster centers as they traverse the regularization path.

doi:10.1371/journal.pcbi.1004228.g018
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Fig 19. Average linkage hierarchical clustering of the breast cancer samples.

doi:10.1371/journal.pcbi.1004228.g019

Table 3. Average runtimes in seconds for different analyses.

Analysis Datapoints Variables CLUSTERPATH CONVEXCLUSTER

CPU GPU

HGDP 52 4,682 8.67 1.46 .32

POPRES 370 10 2.53 1.21 4.29

Breast Cancer data 16 9,216 3.14 2.37 .43

doi:10.1371/journal.pcbi.1004228.t003
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the data to principal components on each GPU itself prior to data transfer. More recent ATI or
nVidia GPUs should improve the speedups on high-dimensional data mentioned here.

Convex clustering also shows promise as a building block for more sophisticated explorato-
ry tools in computational biology. In a companion paper [40] introduce a convex formulation
of the biclustering problem. In biclustering one seeks to cluster both observations and features
simultaneously in a data matrix. Cancer subtype discovery can be formulated as a biclustering
problem in which gene expression data is partitioned into a checkerboard-like pattern
highlighting the associations between groups of patients and the groups of genes that distin-
guish them. To bicluster a data matrix, hierarchical clustering can be applied independently to
the rows and columns of the matrix. Convex biclustering produces more stable biclusterings
while retaining the interpretability of hierarchical biclustering. Convex biclustering requires re-
peatedly solving convex clustering subproblems.

The field of cluster analysis is crowded with so many competing methods that it would fool-
ish to conclude that convex clustering is uniformly superior. Our goal of illustrating the versa-
tility of convex clustering is more modest. The reflex reaction of most biologists is to employ
hierarchical or k-means clustering. We suggest that biologists take a second look. Convex clus-
tering’s ability to reliably deliver an entire solution path is compelling. The insights discussed
here will enhance the careful exploration of many big datasets. The present algorithm, and in-
deed the present formulation of convex clustering, are unlikely to be the last words on the sub-
ject. We encourage other computational biologists and statisticians to refine these promising
tools. CONVEXCLUSTER can be freely downloaded from the UCLA Human Genetics web site at
http://www.genetics.ucla.edu/software/ for analysis and comparison purposes.

Author Contributions
Conceived and designed the experiments: GKC ECC KL. Performed the experiments: GKC.
Analyzed the data: GKC. Wrote the paper: GKC ECC KL. Prepared the POPRES data: JMOR.

References
1. Cormen TH, Stein C, Rivest RL, Leiserson CE. Introduction to Algorithms. 2nd ed. McGraw-Hill Higher

Education; 2001.

2. Lindsten F, Ohlsson H, Ljung L. Clustering using sum-of-norms regularization: With application to parti-
cle filter output computation. In: Statistical Signal ProcessingWorkshop (SSP), 2011 IEEE. IEEE;
2011. p. 201–204.

3. Hocking T, Vert JP, Bach F, Joulin A. Clusterpath: an Algorithm for Clustering using Convex Fusion
Penalties. In: Getoor L, Scheffer T, editors. Proceedings of the 28th International Conference on Ma-
chine Learning (ICML-11). ICML ‘11. New York, NY, USA: ACM; 2011. p. 745–752.

4. Fisher RA. The use of multiple measurements in taxonomic problems. Annals of eugenics. 1936; 7
(2):179–188. doi: 10.1111/j.1469-1809.1936.tb02137.x

5. Lange K, Keys KL. The MM proximal distance algorithm. Proceedings 2014 International Congress of
Mathematicians. 2014;(in press).

6. Borwein JM, Lewis AS. Convex Analysis and Nonlinear Optimization. vol. 3 of CMS Books in Mathe-
matics. 2nd ed. Springer; 2006.

7. Clarke FH. Optimization and Nonsmooth Analysis. vol. 5 of Classics in Applied Mathematics. SIAM;
1990.

8. Demyanov VF, Fletcher R, Terlaky T, Di Pillo G, Schoen F. Nonlinear Optimization. Springer; 2010.

9. Borg I, Groenen PJ. Modern Multidimensional Scaling: Theory and Applications. Springer; 2005.

10. Heiser WJ. Convergent computation by iterative majorization: theory and applications in multidimen-
sional data analysis. Recent Advances in Descriptive Multivariate Analysis. 1995;p. 157–189.

11. Hunter DR, Lange K. A tutorial on MM algorithms. American Statistician. 2004; 58:30–37. doi: 10.1198/
0003130042836

CONVEXCLUSTER

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004228 May 12, 2015 29 / 31

http://www.genetics.ucla.edu/software/
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://dx.doi.org/10.1198/0003130042836
http://dx.doi.org/10.1198/0003130042836


12. Lange K, Hunter DR, Yang I. Optimization transfer using surrogate objective functions. Journal of
Computational and Graphical Statistics. 2000; 9:1–20. doi: 10.2307/1390605

13. Wu TT, Lange K. The MM alternative to EM. Statistical Science. 2010; 25:492–505. doi: 10.1214/08-
STS264

14. Deutsch F. Best Approximation in Inner Product Spaces. vol. 7 of CMS Books in Mathematics. Spring-
er-Verlag; 2001.

15. Parikh N, Boyd S. Proximal algorithms. Foundations and Trends in Optimization. 2013; 1(3):123–231.

16. Lange K. Optimization. 2nd ed. Springer Texts in Statistics. Springer-Verlag; 2012.

17. Bache K, Lichman M. UCI Machine Learning Repository; 2013. Available from: http://archive.ics.uci.
edu/ml.

18. Sokal RR, Michener CD. A statistical method for evaluating systematic relationships. University of Kan-
sas Science Bulletin. 1958; 38:1409–1438.

19. Hopcroft J, Tarjan R. Algorithm 447: Efficient algorithms for graph manipulation. Communications of the
ACM. 1973; 16(6):372–378. doi: 10.1145/362248.362272

20. Hubert L, Arabie P. Comparing partitions. Journal of Classification. 1985; 2(1):193–218. doi: 10.1007/
BF01908075

21. Su YS, Gelman A, Hill J, Yajima M. Multiple Imputation with Diagnostics (mi) in R: OpeningWindows
into the Black Box. Journal of Statistical Software. 2011 12; 45(2):1–31. Available from: http://www.
jstatsoft.org/v45/i02.

22. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype
data. Genetics. 2000 Jun; 155(2):945–959. PMID: 10835412

23. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals.
Genome research. 2009; 19(9):1655–1664. doi: 10.1101/gr.094052.109 PMID: 19648217

24. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analy-
sis corrects for stratification in genome-wide association studies. Nat Genet. 2006 Aug; 38(8):904–909.
doi: 10.1038/ng1847 PMID: 16862161

25. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, et al. Genetic structure of
human populations. Science. 2002 Dec; 298(5602):2381–2385. doi: 10.1126/science.1078311 PMID:
12493913

26. Kittles RA, Weiss KM. Race, ancestry, and genes: implications for defining disease risk. Annual Rev
Genomics HumGenet. 2003; 4:33–67. doi: 10.1146/annurev.genom.4.070802.110356

27. Wang S, Lewis CM Jr, Jakobsson M, Ramachandran S, Ray N, Bedoya G, et al. Genetic Variation and
Population Structure in Native Americans. PLoS Genet. 2007 11; 3(11):e185. doi: 10.1371/journal.
pgen.0030185 PMID: 18039031

28. Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, et al. Worldwide human rela-
tionships inferred from genome-wide patterns of variation. Science. 2008 Feb; 319(5866):1100–1104.
doi: 10.1126/science.1153717 PMID: 18292342

29. census bureau C. The Fourth Population Census of China in 1990; 1990.

30. census bureau C. Population Census of China in 2000; 2000.

31. Rosenberg NA, Mahajan S, Gonzalez-Quevedo C, BlumMG, Nino-Rosales L, Ninis V, et al. Low levels
of genetic divergence across geographically and linguistically diverse populations from India. PLoS
Genet. 2006 Dec; 2(12):e215. doi: 10.1371/journal.pgen.0020215 PMID: 17194221

32. Coudray C, Olivieri A, Achilli A, Pala M, Melhaoui M, Cherkaoui M, et al. The complex and diversified
mitochondrial gene pool of Berber populations. Ann HumGenet. 2009 Mar; 73(2):196–214. doi: 10.
1111/j.1469-1809.2008.00493.x PMID: 19053990

33. Qamar R, Ayub Q, Mohyuddin A, Helgason A, Mazhar K, Mansoor A, et al. Y-chromosomal DNA varia-
tion in Pakistan. Am J HumGenet. 2002 May; 70(5):1107–1124. doi: 10.1086/339929 PMID: 11898125

34. Ablimit A, Qin W, ShanW, WuW, Ling F, Ling KH, et al. Genetic diversities of cytochrome B in Xinjiang
Uyghur unveiled its origin and migration history. BMCGenet. 2013; 14:100. doi: 10.1186/1471-2156-
14-100 PMID: 24103151

35. Nelson MR, Bryc K, King KS, Indap A, Boyko AR, Novembre J, et al. The Population Reference Sam-
ple, POPRES: a resource for population, disease, and pharmacological genetics research. Am J Hum
Genet. 2008 Sep; 83(3):347–358. doi: 10.1016/j.ajhg.2008.08.005 PMID: 18760391

36. Gravel S, Henn BM, Gutenkunst RN, Indap AR, Marth GT, Clark AG, et al. Demographic history and
rare allele sharing among human populations. Proceedings of the National Academy of Sciences.
2011; 108(29):11983–11988. Available from: http://www.pnas.org/content/108/29/11983.abstract. doi:
10.1073/pnas.1019276108

CONVEXCLUSTER

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004228 May 12, 2015 30 / 31

http://dx.doi.org/10.2307/1390605
http://dx.doi.org/10.1214/08-STS264
http://dx.doi.org/10.1214/08-STS264
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1145/362248.362272
http://dx.doi.org/10.1007/BF01908075
http://dx.doi.org/10.1007/BF01908075
http://www.jstatsoft.org/v45/i02
http://www.jstatsoft.org/v45/i02
http://www.ncbi.nlm.nih.gov/pubmed/10835412
http://dx.doi.org/10.1101/gr.094052.109
http://www.ncbi.nlm.nih.gov/pubmed/19648217
http://dx.doi.org/10.1038/ng1847
http://www.ncbi.nlm.nih.gov/pubmed/16862161
http://dx.doi.org/10.1126/science.1078311
http://www.ncbi.nlm.nih.gov/pubmed/12493913
http://dx.doi.org/10.1146/annurev.genom.4.070802.110356
http://dx.doi.org/10.1371/journal.pgen.0030185
http://dx.doi.org/10.1371/journal.pgen.0030185
http://www.ncbi.nlm.nih.gov/pubmed/18039031
http://dx.doi.org/10.1126/science.1153717
http://www.ncbi.nlm.nih.gov/pubmed/18292342
http://dx.doi.org/10.1371/journal.pgen.0020215
http://www.ncbi.nlm.nih.gov/pubmed/17194221
http://dx.doi.org/10.1111/j.1469-1809.2008.00493.x
http://dx.doi.org/10.1111/j.1469-1809.2008.00493.x
http://www.ncbi.nlm.nih.gov/pubmed/19053990
http://dx.doi.org/10.1086/339929
http://www.ncbi.nlm.nih.gov/pubmed/11898125
http://dx.doi.org/10.1186/1471-2156-14-100
http://dx.doi.org/10.1186/1471-2156-14-100
http://www.ncbi.nlm.nih.gov/pubmed/24103151
http://dx.doi.org/10.1016/j.ajhg.2008.08.005
http://www.ncbi.nlm.nih.gov/pubmed/18760391
http://www.pnas.org/content/108/29/11983.abstract
http://dx.doi.org/10.1073/pnas.1019276108


37. Rochefort H, Glondu M, Sahla ME, Platet N, Garcia M. How to target estrogen receptor-negative breast
cancer? Endocr Relat Cancer. 2003 Jun; 10(2):261–266. doi: 10.1677/erc.0.0100261 PMID: 12790787

38. Perou CM, S?rlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human
breast tumours. Nature. 2000 Aug; 406(6797):747–752. doi: 10.1038/35021093 PMID: 10963602

39. Chi EC, Lange K. Splitting methods for convex clustering. Journal of Computational and Graphical Sta-
tistics. 2013.

40. Chi EC, Allen GI, Baraniuk RG. Convex Biclustering; 2014. arXiv:1408.0856 [stat.ME]. Available from:
http://arxiv.org/abs/1408.0856.

CONVEXCLUSTER

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004228 May 12, 2015 31 / 31

http://dx.doi.org/10.1677/erc.0.0100261
http://www.ncbi.nlm.nih.gov/pubmed/12790787
http://dx.doi.org/10.1038/35021093
http://www.ncbi.nlm.nih.gov/pubmed/10963602
http://arxiv.org/abs/1408.0856

